Skip to main content
Log in

Enhancing betavoltaic nuclear battery performance with 3D P+PNN+ multi-groove structure via carrier evolution

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Betavoltaic nuclear batteries offer a promising alternative energy source that harnesses the power of beta particles emitted by radioisotopes. To satisfy the power demands of microelectromechanical systems (MEMS), 3D structures have been proposed as a potential solution. Accordingly, this paper introduces a novel 3D 63Ni–SiC-based P+PNN+ structure with a multi-groove design, avoiding the need for PN junctions on the inner surface, and thus reducing leakage current and power losses. Monte Carlo simulations were performed considering the fully coupled physical model to extend the electron–hole pair generation rate to a 3D structure, enabling the efficient design and development of betavoltaic batteries with complex 3D structures. As a result, the proposed model produces the significantly higher maximum output power density of 19.74 µW/cm2 and corresponding short-circuit current, open-circuit voltage, and conversion efficiency of 8.57 µA/cm2, 2.45 V, and 4.58%, respectively, compared with conventional planar batteries. From analysis of the carrier transport and collection characteristics using the COMSOL Multiphysics code, we provide deep insights regarding power increase, and elucidate the discrepancies between the ideal and simulated performances of betavoltaic batteries. Our work offers a promising approach for the design and optimization of high-output betavoltaic nuclear batteries with a unique 3D design, and serves as a valuable reference for future device fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.j00186.00275 and https://cstr.cn/31253.11.sciencedb.j00186.00275.

References

  1. W.Z. Yuan, D.Y. Qiao, Micro-Electro-Mechanical System (MEMS) Manufacturing Technology (Science Press, Beijing, 2014)

    Google Scholar 

  2. C. Thomas, S. Portnoff, M.G. Spencer, High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes. Appl. Phys. Lett. 108, 013505 (2016). https://doi.org/10.1063/1.4939203

    Article  ADS  Google Scholar 

  3. S.G. Kim, S. Priya, I. Kanno, Piezoelectric MEMS for energy harvesting. MRS Bull. 37, 1039–1050 (2012). https://doi.org/10.1557/mrs.2012.275

    Article  Google Scholar 

  4. O.M. Barham, Comparing nuclear and chemical power sources for MEMS/NEMS applications. in ASME 2021 International Design Engineering technical Conferences and Computers and Information in Engineering Conference. Volume 11: 15th International Conference on Micro- and Nanosystems (MNS), (2021). https://doi.org/10.1115/detc2021-68110

  5. A.V. Sachenko, A.I. Shkrebtii, R.M. Korkishko et al., Efficiency analysis of betavoltaic elements. Solid State Electron. 111, 147–152 (2015). https://doi.org/10.1016/j.sse.2015.05.042

    Article  ADS  Google Scholar 

  6. H.Y. Chen, L. Jiang, X.Y. Chen, Design optimization of GaAs betavoltaic batteries. J. Phys. D Appl. Phys. 44, 215303 (2011). https://doi.org/10.1088/0022-3727/44/21/215303

    Article  ADS  Google Scholar 

  7. M. Lu, G.-G. Zhang, K. Fu et al., Gallium nitride Schottky betavoltaic nuclear batteries. Energ. Convers. Manage. 52, 1955–1958 (2011). https://doi.org/10.1016/j.enconman.2010.10.048

    Article  Google Scholar 

  8. T.R. Alam, M.A. Pierson, M.A. Prelas, Beta particle transport and its impact on betavoltaic battery modeling. Appl. Radiat. Isotopes. 130, 80–89 (2017). https://doi.org/10.1016/j.apradiso.2017.09.009

    Article  Google Scholar 

  9. S.I. Maximenko, J.E. Moore, C.A. Affouda et al., Optimal semiconductors for 3H and 63Ni betavoltaics. Sci. Rep. 9, 10892 (2019). https://doi.org/10.1038/s41598-019-47371-6

    Article  ADS  Google Scholar 

  10. C. Zhao, F. Liao, K. Liu et al., Breaking the myth: wide-bandgap semiconductors not always the best for betavoltaic batteries. Appl. Phys. Lett. 119, 153904 (2021). https://doi.org/10.1063/5.0068269

    Article  ADS  Google Scholar 

  11. C. Zhao, A. Liu, S. Bai et al., Understanding efficiency differences of betavoltaic batteries measured by electron gun mimicked source and radioactive β source. Appl. Phys. Lett. 117, 193901 (2020). https://doi.org/10.1063/5.0028450

    Article  ADS  Google Scholar 

  12. A. Belghachi, K. Bozkurt, O. Ozdemir et al., Enhancement of Ni-63 planar source efficiency for betavoltaic batteries. J. Phys. D Appl. Phys. 53, 445501 (2020). https://doi.org/10.1088/1361-6463/ab9977

    Article  ADS  Google Scholar 

  13. X.B. Tang, D. Ding, Y.P. Liu et al., Optimization design and analysis of Si–63Ni betavoltaic battery. Sci. China Tech. Sci. 55, 990–996 (2012). https://doi.org/10.1007/s11431-012-4752-6

    Article  Google Scholar 

  14. F. Bouzid, S. Dehimi, M. Hadjab et al., Performance prediction of AlGaAs/GaAs betavoltaic cells irradiated by nickel-63 radioisotope. Physica B 607, 412850 (2021). https://doi.org/10.1016/j.physb.2021.412850

    Article  Google Scholar 

  15. R.Z. Zheng, J.B. Lu, Y. Wang et al., Understanding efficiency improvements of betavoltaic batteries based on 4H–SiC, GaN, and diamond. Appl. Phys. Lett. 121, 103902 (2022). https://doi.org/10.1063/5.0102995

    Article  ADS  Google Scholar 

  16. Y.M. Liu, J.B. Lu, X.Y. Li et al., A 4H–SiC betavoltaic battery based on a 63Ni source. Nucl. Sci. Tech. 29, 168 (2018). https://doi.org/10.1007/s41365-018-0494-x

    Article  ADS  Google Scholar 

  17. L. Zhang, H.L. Cheng, X.C. Hu et al., Model and optimal design of 147Pm SiC-based betavoltaic cell. Superlattice. Microst. 123, 60–70 (2018). https://doi.org/10.1016/j.spmi.2018.01.007

    Article  ADS  Google Scholar 

  18. G.Q. Wang, H. Li, Y. Lei et al., Demonstration of Pm-147 GaN betavoltaic cells. Nucl. Sci. Tech. 25, 020403 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.020403

    Article  Google Scholar 

  19. C.E. Munson, Q. Gaimard, K. Merghem et al., Modeling, design, fabrication and experimentation of a GaN-based, 63Ni betavoltaic battery. J. Phys. D Appl. Phys. 51, 035101 (2018). https://doi.org/10.1088/1361-6463/aa9e41

    Article  ADS  Google Scholar 

  20. A. Krasnov, S. Legotin, K. Kuzmina et al., A nuclear battery based on silicon pin structures with electroplating 63Ni layer. Nucl. Eng. Technol. 51, 1978–1982 (2019). https://doi.org/10.1016/j.net.2019.06.003

    Article  Google Scholar 

  21. Y. Liu, R. Hu, Y. Yang et al., Investigation on a radiation tolerant betavoltaic battery based on Schottky barrier diode. Appl. Radiat. Isotopes. 70, 438–441 (2012). https://doi.org/10.1016/j.apradiso.2011.10.013

    Article  Google Scholar 

  22. H. Guo, Y. Shi, Y. Zhang et al., Fabrication of SiC p–i–n betavoltaic cell with 63Ni irradiation source. in 2011 IEEE International Conference of Electron Devices and Solid-State Circuits. (2011), pp. 1–2. https://doi.org/10.1109/EDSSC.2011.6117636

  23. S. Yao, Z. Song, X. Wang et al., Design and simulation of betavoltaic battery using large-grain polysilicon. Appl. Radiat. Isotopes. 70, 2388–2394 (2012). https://doi.org/10.1016/j.apradiso.2012.06.009

    Article  Google Scholar 

  24. G. Gui, K. Zhang, J.P. Blanchard et al., Prediction of 4H-SiC betavoltaic microbattery characteristics based on practical Ni-63 sources. Appl. Radiat. Isotopes. 107, 272–277 (2016). https://doi.org/10.1016/j.apradiso.2015.11.001

    Article  Google Scholar 

  25. Z.J. Cheng, X.Y. Chen, H.S. San et al., A high open-circuit voltage gallium nitride betavoltaic microbattery. J. Micromech. Microeng. 22, 074011 (2012). https://doi.org/10.1088/0960-1317/22/7/074011

    Article  ADS  Google Scholar 

  26. W. Sun, N.P. Kherani, K.D. Hirschman et al., A three-dimensional porous silicon p–n diode for betavoltaics and photovoltaics. Adv. Mater. 17, 1230–1233 (2005). https://doi.org/10.1002/adma.200401723

    Article  Google Scholar 

  27. A.A. Krasnov, V.V. Starkov, S.A. Legotin et al., Development of betavoltaic cell technology production based on microchannel silicon and its electrical parameters evaluation. Appl. Radiat. Isotopes. 121, 71–75 (2017). https://doi.org/10.1016/j.apradiso.2016.12.019

    Article  Google Scholar 

  28. J.W. Murphy, C.D. Frye, R.A. Henderson et al., Demonstration of a three-dimensionally structured betavoltaic. J. Electron. Mater. 50, 1380–1385 (2021). https://doi.org/10.1007/s11664-020-08611-y

    Article  ADS  Google Scholar 

  29. Z. Ding, T.X. Jiang, R.R. Zheng et al., Quantitative modeling, optimization, and verification of 63Ni-powered betavoltaic cells based on three-dimensional ZnO nanorod arrays. Nucl. Sci. Tech. 33, 144 (2022). https://doi.org/10.1007/s41365-022-01127-6

    Article  Google Scholar 

  30. A.A. Krasnov, S.A. Legotin, Advances in the development of betavoltaic power sources (a review). Instrum. Exp. Tech+. 63, 437–452 (2020). https://doi.org/10.1134/s0020441220040156

    Article  Google Scholar 

  31. Y.J. Yoon, J.S. Lee, I.M. Kang et al., Design and optimization of GaN-based betavoltaic cell for enhanced output power density. Int. J. Energ. Res. 45, 799–806 (2021). https://doi.org/10.1002/er.5909

    Article  Google Scholar 

  32. F. Rahmani, H. Khosravinia, Optimization of silicon parameters as a betavoltaic battery: comparison of Si pn and Ni/Si Schottky barrier. Radiat. Phys. Chem. 125, 205–212 (2016). https://doi.org/10.1016/j.radphyschem.2016.04.012

    Article  ADS  Google Scholar 

  33. W. Li, K. Nomoto, Z. Hu et al., Field-plated Ga2O3 Trench Schottky barrier diodes with a BV2/Ron, sp of up to 0.95 GW/cm2. IEEE Electr. Dev. L. 41, 107–110 (2019). https://doi.org/10.1109/LED.2019.2953559

    Article  ADS  Google Scholar 

  34. J. Yota, H. Shen, R. Ramanathan, Characterization of atomic layer deposition HfO2, Al2O3, and plasma-enhanced chemical vapor deposition Si3N4 as metal-insulator-metal capacitor dielectric for GaAs HBT technology. J. Vac. Sci. Technol. A 31, 01A134 (2013). https://doi.org/10.1116/1.4769207

    Article  Google Scholar 

  35. N. Alimardani, J.F. Conley, Enhancing metal-insulator-insulator-metal tunnel diodes via defect enhanced direct tunneling. Appl. Phys. Lett. 105, 082902 (2014). https://doi.org/10.1063/1.4893735

    Article  ADS  Google Scholar 

  36. R. Singh, T.R. Lenka, D.K. Panda et al., The dawn of Ga2O3 HEMTs for high power electronics: a review. Mat. Sci. Semicon. Proc. 119, 105216 (2020). https://doi.org/10.1016/j.mssp.2020.105216

    Article  Google Scholar 

  37. D.Y. Qiao, W.Z. Yuan, P. Gao et al., Demonstration of a 4H SiC betavoltaic nuclear battery based on Schottky barrier diode. Chin. Phys. Lett. 25, 3798 (2008). https://doi.org/10.1088/0256-307X/25/10/076

    Article  ADS  Google Scholar 

  38. X.Y. Li, Y. Ren, X.J. Chen et al., 63Ni schottky barrier nuclear battery of 4H-SiC. J. Radioanal. Nucl. Ch. 287, 173–176 (2011). https://doi.org/10.1007/s10967-010-0746-7

    Article  Google Scholar 

  39. K. Vanthanh, Y.C. Ma, J.H. Si et al., Fabrication of micro-grooves in silicon carbide using femtosecond laser irradiation and acid etching. Chin. Phys. Lett. 31, 037901 (2014). https://doi.org/10.1088/0256-307X/31/3/037901

    Article  ADS  Google Scholar 

  40. B.J. Baliga, Fundamentals of Power Semiconductor Devices (Springer Science & Business Media, 2010)

    Google Scholar 

  41. A.A. Svintsov, A.A. Krasnov, M.A. Polikarpov et al., Betavoltaic battery performance: comparison of modeling and experiment. Appl. Radiat. Isotopes. 137, 184–189 (2018). https://doi.org/10.1016/j.apradiso.2018.04.010

    Article  Google Scholar 

  42. C. Zhao, L. Lei, F.Y. Liao et al., Efficiency prediction of planar betavoltaic batteries basing on precise modeling of semiconductor units. Appl. Phys. Lett. 117, 263901 (2020). https://doi.org/10.1063/5.0033052

    Article  ADS  Google Scholar 

  43. S. Mohamadian, S. Feghhi, H. Afarideh, Analyze and simulation of a typical MEMS RPG using MCNP code. Int. Conf. Nucl. Eng. 48140, 883–886 (2008). https://doi.org/10.1115/ICONE16-48766

    Article  Google Scholar 

  44. X. Li, N.P. Hylton, V. Giannini et al., Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations. Prog. Photovolt. 21, 109–120 (2013). https://doi.org/10.1002/pip.2159

    Article  Google Scholar 

  45. Q.J. Meng, H.B. Liu, Q.H. Meng, Physics of Semiconductor Devices (Science Press, Beijing, 2005)

    Google Scholar 

  46. M. Grundmann, Diodes. in M. Grundmann (Ed.) The Physics of Semiconductors: An Introduction Including Nanophysics and Applications. (Springer International Publishing, Cham, 2016), pp. 583–667. https://doi.org/10.1007/978-3-319-23880-7_21

  47. T. Okuda, T. Miyazawa, H. Tsuchida et al., Carrier lifetimes in lightly-doped p-Type 4H-SiC epitaxial layers enhanced by post-growth processes and surface passivation. J. Electron. Mater. 46, 6411–6417 (2017). https://doi.org/10.1007/s11664-017-5677-4

    Article  ADS  Google Scholar 

  48. J. Zhang, L. Storasta, J.P. Bergman et al., Electrically active defects inn-type 4H–silicon carbide grown in a vertical hot-wall reactor. J. Appl. Phys. 93, 4708–4714 (2003). https://doi.org/10.1063/1.1543240

    Article  ADS  Google Scholar 

  49. B.J. Baliga, The Igbt Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor (Elsevier, Waltham, 2015)

    Google Scholar 

  50. O. Kordina, J.P. Bergman, C. Hallin et al., The minority carrier lifetime of n-type 4H- and 6H-SiC epitaxial layers. Appl. Phys. Lett. 69, 679–681 (1996). https://doi.org/10.1063/1.117804

    Article  ADS  Google Scholar 

  51. P. Ščajev, K. Jarašiūnas, Temperature- and excitation-dependent carrier diffusivity and recombination rate in 4H–SiC. J. Phys. D Appl. Phys. 46, 265304 (2013). https://doi.org/10.1088/0022-3727/46/26/265304

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Hou-Jun He, Yun-Cheng Han, Xiao-Yu Wang, Yu-Min Liu, Jia-Chen Zhang, Lei Ren and Ming-Jie Zheng. The first draft of the manuscript was written by Hou-Jun He and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiao-Yu Wang or Ming-Jie Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by Anhui Provincial Key R&D Program (No. 202104g0102007), Jiangxi Provincial Department of Education Science and Technology Research Youth Project (GJJ200763), Hubei Provincial Natural Science Foundation of China (No. 2022CFB575), Hefei Municipal Natural Science Foundation (No. 2022011); Ministry of Education Industry-Education Cooperation Project (No. 202102647014), Science Island Graduate Innovation and Entrepreneurship Fund Project (No. KY-2022-SC-04).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 874 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, HJ., Han, YC., Wang, XY. et al. Enhancing betavoltaic nuclear battery performance with 3D P+PNN+ multi-groove structure via carrier evolution. NUCL SCI TECH 34, 181 (2023). https://doi.org/10.1007/s41365-023-01331-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01331-y

Keywords

Navigation