Skip to main content

Advertisement

Log in

Exploratory study of betavoltaic battery using ZnO as the energy converting material

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Third-generation-semiconductor zinc oxide is utilized as an energy converting material in a betavoltaic battery, where 0.06 Ci 63Ni and 8 Ci 147Pm are used as the beta sources. Based on a Monte Carlo simulation, the full scales of the devices are derived as 17 and 118 μm, respectively, for both sources. The influences of semiconductor doping concentrations on the electrical properties of the devices are analyzed. For a typical doping concentration NA= 1017 cm−3, ND= 1016 cm−3, the conversion efficiencies are 7.177% and 1.658%, respectively, using 63Ni and 147Pm sources. The calculation results of energy deposition in materials for the two sources show that the doping concentrations drop to 1 × 1013–5×1014 cm−3 and 1 × 1012–5×1013, and accordingly, the energy conversion efficiencies rise to 14.212% and 18.359%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.C. Hao, Z.M. Lu, X.M. Fu et al., Nuclear battery materials and application of nuclear batteries. Nucl. Phys. Rev. 23(3), 353–358 (2006). (in Chinese)

    Google Scholar 

  2. D.R. Li, L. Jiang, J.H. Yin et al., Betavoltaic battery conversion efficiency improvement based on interlayer structures. Chin. Phys. Lett. 29(29), 78102–78105(4) (2012). https://doi.org/10.1088/0256-307x/29/7/078102

    Article  Google Scholar 

  3. G. Gui, K. Zhang, J.P. Blanchard et al., Prediction of 4H–SiC betavoltaic microbattery characteristics based on practical Ni-63 sources. Appl. Radiat. Isot. 107, 272–277 (2016). https://doi.org/10.1016/j.apradiso.2015.11.001

    Article  Google Scholar 

  4. L. Zhang, H.L. Cheng, X.C. Hu et al., Model and optimal design of 147 Pm SiC-based betavoltaic cell. Superlattices Microstruct. 123, 60–70 (2018). https://doi.org/10.1016/j.spmi.2018.01.007

    Article  Google Scholar 

  5. C. Thomas, S. Portnoff, M.G. Spencer, High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes. Appl. Phys. Lett. 108(1), 013505 (2016). https://doi.org/10.1063/1.4939203

    Article  Google Scholar 

  6. C.E. Munson, Q. Gaimard, K. Merghem et al., Modeling, design, fabrication and experimentation of a GaN-based, 63Ni betavoltaic battery. J. Phys. D Appl. Phys. 51(3), 035101 (2017). https://doi.org/10.1088/1361-6463/aa9e41

    Article  Google Scholar 

  7. N. Ayarcı Kuruoğlu, O. Özdemir, K. Bozkurt, Betavoltaic study of a GaN p-i-n structure grown by metal-organic vapour phase epitaxy with a Ni-63 source. Thin Solid Films 636, 746–750 (2017). https://doi.org/10.1016/j.tsf.2017.07.033

    Article  Google Scholar 

  8. B.H. Kim, J.W. Kwon, Plasmon-assisted radiolytic energy conversion in aqueous solutions. Sci. Rep. (2014). https://doi.org/10.1038/srep05249

    Article  Google Scholar 

  9. H. Guo, H. Yang, Y. Zhang. Betavoltaic microbatteries using porous silicon, in IEEE International Conference on MICRO Electro Mechanical Systems (IEEE, 2007), pp. 867–870

  10. X.J. Yang, X.L. Xu, J.C. Xie et al., Research of ZnO homogeneous p–n junction. J. Vac. Sci. Technol. (China) 25(s1), 101–104 (2005). (in Chinese)

    Google Scholar 

  11. Y.N. He, C.C. Zhu, X. Hou, Recent advances in characteristics of ZnO semiconductor. J. Funct. Mater. Devices 14(03), 566–574 (2008). (in Chinese)

    Google Scholar 

  12. M.A. Prelas, C.L. Weaver, M.L. Watermann et al., A review of nuclear batteries. Prog. Nucl. Energy 75, 117–148 (2014). https://doi.org/10.1016/j.pnucene.2014.04.007

    Article  Google Scholar 

  13. H.D. Wang, Research on the On-line Coal Analysis Based on Neutron Activation and the Energy Transport of β-Voltaic Nuclear Battery (Jilin University, Changchun, 2012). (in Chinese)

    Google Scholar 

  14. H.D. Wang, Y.M. Liu, K. Yang et al., The transport of β particle in Beta- voltaic Battery. Prog. Rep. Chin. Nucl. Sci. Technol. 2, 157–164 (2011). (in Chinese)

    Google Scholar 

  15. L.P. Yang, F. Liu, H.P. Han, Research and development of ZnO. Microelectromech. Technol. 44(2), 81–87 (2007). (in Chinese)

    Google Scholar 

  16. A. Janotti, dWCG Van, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72(12), 126501 (2009). https://doi.org/10.1088/0034-4885/72/12/126501

    Article  Google Scholar 

  17. L.L. Chen, Z.Z. Ye, J.G. Lu et al., Control and improvement of p-type conductivity in indium and nitrogen codoped ZnO thin films. Appl. Phys. Lett. 89(25), 547 (2006). https://doi.org/10.1063/1.2405858

    Article  Google Scholar 

  18. N. Narayanan, D.N. Kannoth, Exploring p type conductivity in ZnO thin films by In–N codoping for homo-junction devices. J. Mater. Sci.: Mater. Electron. 28(8), 1–9 (2016). https://doi.org/10.1007/s10854-016-6270-y

    Article  Google Scholar 

  19. J.M. Bian, X.M. Li, C.Y. Zhang et al., Synthesis and characterization of two-layer-structured ZnO p–n homojunctions by ultrasonic spray pyrolysis. Appl. Phys. Lett. 84(19), 3783–3785 (2004). https://doi.org/10.1063/1.1739280

    Article  Google Scholar 

  20. X. Yang, X. Xu, F. Liu et al., Fabrication of p-ZnO:Na/n-ZnO: Na homojunction by surface pulsed laser irradiation. RSC. Adv. 7(59), 37296–37301 (2017). https://doi.org/10.1039/C7RA05574A

    Article  Google Scholar 

  21. J.G. Lu, Y.Z. Zhang, Z.Z. Ye et al., Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method. Appl. Phys. Lett. 88, 222114 (2006). https://doi.org/10.1063/1.2209191

    Article  Google Scholar 

  22. P.A. Wahid, An Introduction to Isotopes and Radiations (Allied Publishers, New Delhi, 2001), p. 94

    Google Scholar 

  23. J.G. Lu, Z.Z. Ye, G.D. Yuan et al., Electrical characterization of ZnO-based homojunctions. Appl. Phys. Lett. 89(5), 2203 (2006). https://doi.org/10.1063/1.2245221

    Article  Google Scholar 

  24. G.Q. Wang, H.M. Zhang, S.Z. Luo et al., Electrical capabilities of silicon diode on irradiating. J. Isot. 21(4), 198–203 (2008). (in Chinese)

    Google Scholar 

  25. D.C. Look, Electrical and optical properties of p-type ZnO. Semicond. Sci. Tech. 20, S55–S61 (2005). https://doi.org/10.1088/0268-1242/20/4/007

    Article  Google Scholar 

  26. X.B. Tang, Y.P. Liu, D. Ding et al., Optimization design of GaN betavoltaic microbattery. Sci China Tech Sci 55, 659–664 (2012). https://doi.org/10.1007/s11431-011-4739-8. (in Chinese)

    Article  Google Scholar 

  27. Y.P. Liu, X.B. Tang, Z.H. Xu et al., Influences of planar source thickness on betavoltaics with different semiconductors. J. Radioanal. Nucl. Chem. 304(2), 517–525 (2015). https://doi.org/10.1007/s10967-014-3879-2

    Article  Google Scholar 

  28. X.B. Tang, Y.P. Liu, D. Ding et al., Optimization design of GaN betavoltaic microbattery. Sci. China. Tech Sci. 55, 659–664 (2012). https://doi.org/10.1007/s11431-011-4739-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Bin Lu.

Additional information

This work was supported by the National Major Scientific Instruments and Equipment Development Projects (No. 2012YQ240121) and the National Natural Science Foundation of China (No. 11075064).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XY., Lu, JB., Liu, YM. et al. Exploratory study of betavoltaic battery using ZnO as the energy converting material. NUCL SCI TECH 30, 60 (2019). https://doi.org/10.1007/s41365-019-0577-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0577-3

Keywords

Navigation