Skip to main content
Log in

Remote sensing analysis of unknown origin of a crater in western Yemen

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

The present study aims to detect unknown origin of a terrestrial structure in western Yemen based on the remote sensing procedure in order to enhance scientific database on the possible impact craters in the Middle Eastern countries. On this basis, a crater-shaped structure, named as Salab crater, was detected with a diameter of ~3.2-km. Topographical study indicated a circular morphology with two rings. Interior ring has a diameter of ~1-km and depth of ~100-m, while exterior ring has a diameter of ~2.2-km and depth of ~400-m. According to the geological data, the crater environ mainly has the different units outcropped of the Jurassic Amran limestone, the Cretaceous Tawilah sandstone, and the late Oligocene to early Miocene volcanic groups and intrusions. We indicated that the Salab crater is entirely located on Jurassic limestone of Amran group bedrocks with poor aquifer, low potential of water productivity and impure limestone deposits. Hence, the Salab crater could not be categorized as a volcanic crater or a karstic product. In addition, it could not be the remained from a salt-dome or a certain active hydrothermal pattern of springs. Nevertheless, to distinguish of the crater from old and fossil travertine crater or a possible impact crater, a detailed field work and a petrology investigation should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. “Jabal Salab” is an Arabic term that means “very hard mountain”.

References

  1. Grieve, R. A. F. (2005). Economic natural resource deposits at terrestrial impact structures. In I. Mc Donald, A. J. Boyce, I. B. Butler, R. J. Harrington, & D. A. Polya (Eds.), Mineral deposits and earth evolution (Vol. 248, pp. 1–29). London: Geological Society London Special Publication.

    Google Scholar 

  2. French, B. M., & Koeberl, C. (2010). The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why. Earth-Science Reviews, 98(1–2), 123–170.

    Article  Google Scholar 

  3. Koeberl, C., & Reimold, W. U. (2005). Bosumtwi impact crater, Ghana (West Africa): An updated and revised geological map, with explanations. Jahrbuch der Geologischen Bundesanstalt (Austrian Geological Survey), 145, 31–70.

    Google Scholar 

  4. Buchner, E., & Kenkmann, T. (2008). Upheaval dome: Impact origin confirmed. Geology, 36(3), 227–230.

    Article  Google Scholar 

  5. Wright, S. P., Tornabene, L. L., & Ramsey, M. S. (2013). Remote sensing of impact craters. In G. R. Osinski & E. Pierazzo (Eds.), Impact cratering: Processes and products (pp. 194–214). Oxford: Blackwell Publishing Ltd.

    Google Scholar 

  6. Paillou, P., El Barkooky, A., Barakat, A., Malezieux, J. M., Reynard, B., Dejax, J., et al. (2004). Discovery of the largest impact crater field on Earth in the Gilf Kebir region, Egypt. Comptes Rendus Geosciences, Academy of Sciences, 336, 1491–1500.

    Article  Google Scholar 

  7. Mansouri Daneshvar, M. R., & Bagherzadeh, A. (2013). Geomorphological investigation of possible impact evidences for the crater-shaped structure of Zirouki in Samsour Desert, SE Iran. Earth Science Informatics, 6(4), 241–252.

    Article  Google Scholar 

  8. Mansouri Daneshvar, M. R. (2015). Remote sensing analysis for the possible impact structure of Lakhčak Crater in southern Afghanistan. Applied Geomatics, 7(4), 275–282.

    Article  Google Scholar 

  9. Gad, S., & Kusky, T. (2006). Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat thematic mapper (TM). Journal of African Earth Sciences, 44, 196–202.

    Article  Google Scholar 

  10. Wright, S. P., & Ramsey, M. S. (2006). Thermal infrared data analyses of Meteor Crater, Arizona: Implications for Mars spaceborne data from the Thermal Emission Imaging System. Journal of Geophysical Research, 111, E02004.

    Google Scholar 

  11. Schmieder, M., Seyfried, H., & Gerel, O. (2013). The circular Uneged Uul structure (East Gobi Basin, Mongolia)—Geomorphic and structural evidence for meteorite impact into an unconsolidated coarse-clastic target? Journal of Asian Earth Sciences, 64(5), 58–76.

    Article  Google Scholar 

  12. Heinrichs, T., Salameh, E., & Khouri, H. (2014). The Waqf as Suwwan crater, Eastern Desert of Jordan: Aspects of the deep structure of an oblique impact from reflection seismic and gravity data. International Journal of Earth Sciences, 103(1), 233–252.

    Article  Google Scholar 

  13. Pati, J. K., Prakash, K., & Kundu, R. (2009). Terrestrial impact structures and their confirmation: Example from Dhala Structure, central India. Earth Science India, 2(3), 289–298.

    Google Scholar 

  14. Blom, R. G., McHone, J. F., & Crippen, R. E. (1998). Possible 770-meter-diameter impact crater detected by satellite; Yemen Arab Republic. Meteoritics and Planetary Science, 33(4), A17.

    Google Scholar 

  15. Mchone, J. F., & Dietz, R. S. (1988). Arabian peninsula: Known and suspected impact structures. Meteoritics, 23, 223–224.

    Google Scholar 

  16. Chabou, M. C. (2009). Meteorite impact craters in the Arab world: An overview. In Proceedings of first Arab impact cratering and astrogeology conference. Amman, Jordan.

  17. Rajmon, D. (2010). Impact Database, v. 2010.1. http://impacts.rajmon.cz. Accessed 2010.

  18. World Bank. (2010). Sana’a Basin Water Management Project, Republic of Yemen. Sustainable Development Department of Middle East and North Africa Region (ID:P064981). http://www.worldbank.org/projects/P064981. Accessed 2010.

  19. Noaman, A., Petersen, G., Kiese, J., & Wade, S. (2013). Climate change impacts on water resources in Yemen. Journal of Earth Science and Engineering, 3, 629–638.

    Google Scholar 

  20. NASA. (2011). The advanced spaceborne thermal emission and reflection radiometer (ASTER) global digital elevation model (GDEM). National Aeronautics and Space Administration (NASA), Earth Remote Sensing Data Analysis Center (ERSDAC). http://www.gdem.aster.ersdac.or.jp/search.jsp. Accessed 2011.

  21. Geukens, F. (1966). Geology of the Arabian Peninsula; Yemen. Translated from the French by SD Bowers. United States Government Printing Office, Geological Survey Professional Paper 560–B, Washington.

  22. As-Saruri, M. (2007). Geologic map of Yemen. Republic of Yemen ministry of oil and minerals petroleum exploration and production authority (PEPA). http://www.pepa.com.ye/Downloads/downloads.htm. Accessed 2007.

  23. Yemen water community. (2013). Hydrology of Yemen. Sana’a: Water and Environment Centre.

    Google Scholar 

  24. NGA. (2008). Earth gravitational model (EGM2008). National Geospatial Intelligence—Agency (NGA). Office of Geomatics.

  25. Al-Wathaf, Y., & El-Mansouri, B. (2011). Assessment of aquifer vulnerability based on GIS and ARCGIS methods: A case study of the Sana’a Basin (Yemen). Journal of Water Resource and Protection, 3, 845–855.

    Article  Google Scholar 

  26. Beydoun, Z. R., As-Saruri, M. A., El-Nakhal, H., Al-Ganad, T. N., Baraba, R. S., Nani, A. O., et al. (1998). International lexicon of stratigraphy, Republic of Yemen. Sanaa: IUGS and Ministry Of Oil and Mineral Resources.

    Google Scholar 

  27. Al-Naaymi, T. A., & Ali, M. A. (2013). Chemical, physical and geotechnical properties comparison between scoria and pumice deposits in Dhamar—Rada volcanic field—SW Yemen. Australian Journal of Basic and Applied Sciences, 7(11), 116–124.

    Google Scholar 

  28. Heikal, M. T. S., Lebda, E. M. M., Orihashi, Y., & Habtoor, A. (2014). Petrogenetic evolution of basaltic lavas from Balhaf-Bir Ali Plio-Quaternary volcanic field, Arabian Sea, Republic of Yemen. Arabian Journal of Geosciences, 7, 69–86.

    Article  Google Scholar 

  29. Yemen Geological Survey and Mineral Resources Board. (2009). Mineral resources of Yemen; zinclead in Yemen. Yemen Geological Survey and Mineral Resources Board. http://extra.geus.info/hkp/yemen. Accessed 2009.

  30. Wright, A. J., Parnell, J., & Ames, D. E. (2010). Carbon spherules in Ni–Cu–PGE sulphide deposits in the Sudbury impact structure, Canada. Precambrian Research, 177, 23–38.

    Article  Google Scholar 

  31. El Anbaawy, M. I. H., & Fara, M. (1993). Geology of Damt travertine deposits and thermomineral springs, Yemen Republic. Acta Geologica Universitatis Comemianae, 49, 97–109.

    Google Scholar 

  32. Al-Kohlani, T. A. M. (2008). Geochemistry of thermal waters from Al-Lisi-Isbil geothermal field, Dhamar governorate, Yemen. United Nations University, Geothermal Training Programme, Geothermal Training in Iceland, 10, 53–76.

    Google Scholar 

  33. Minissale, A., Mattash, M. A., Vaselli, O., Tassi, F., Al-Ganad, I. N., Selmo, E., et al. (2007). Thermal springs, fumaroles and gas vents of continental Yemen: Their relation with active tectonics, regional hydrology and the country’s geothermal potential. Applied Geochemistry, 22, 799–820.

    Article  Google Scholar 

  34. Blair, R. W., Jr. (1986). Karst landforms and lakes. In N. M. Short Sr. & R. W. Blair Jr. (Eds.), Geomorphology from space: A global overview of regional landforms (pp. 402–446). Washington DC: NASA Special Publication (SP–486).

    Google Scholar 

  35. Mansouri Daneshvar, M. R. (2015). Climatic impacts on hydrogeochemical characteristics of mineralized springs: A case study of the Garab travertine zone in the northeast of Iran. Arabian Journal of Geosciences, 8(7), 4895–4906.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Mansouri Daneshvar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri Daneshvar, M.R., Nejadsoleymani, H. Remote sensing analysis of unknown origin of a crater in western Yemen. Spat. Inf. Res. 25, 575–583 (2017). https://doi.org/10.1007/s41324-017-0124-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-017-0124-4

Keywords

Navigation