Skip to main content

Advertisement

Log in

Remote sensing analysis for the possible impact structure of Lakhčak Crater in southern Afghanistan

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

The present study has aimed to detect a possible impact crater in southern Afghanistan based on the remote sensing data. On this basis, a circular structure was detected in southern Afghanistan as a possible impact structure named as Lakhčak crater. Topographical study has indicated the circular-shaped morphology of ∼5 km diameter and ∼800 m depth with the rim and central projections. According to the geological data, the crater has been covered by a circular pattern of granodiorite and granosyenite lithology. Therefore, the geophysical pattern revealed a negative gravity anomaly of about −22 mGal over of the crater, which can be consequence of a possible impact structure. The present research is one of the frontier remotely sensed studies about the possible impact craters in the Middle East, which needs further fieldwork and petrological investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Buchner E, Kenkmann T (2008) Upheaval dome: impact origin confirmed. Geology 36(3):227–230

    Article  Google Scholar 

  • Folco L, Di Martino M, El Barkooky A, D’Orazio M, Lethy A, Urbini S, Nicolosi I, Hafez M, Cordier C, van Ginneken M, Zeoli A, Radwan AM, El Khrepy S, El Gabry M, Gomaa M, Barakat AA, Serra R, El Sharkawi M (2010) The kamil crater in Egypt. Science 329(5993):804

    Article  Google Scholar 

  • Folco L, Di Martino M, El Barkooky A, D’Orazio M, Lethy A, Urbini S, Nicolosi I, Hafez M, Cordier C, van Ginneken M, Zeoli A, Radwan AM, El Khrepy S, El Gabry M, Gomaa M, Barakat AA, Serra R, El Sharkawi M (2011) Kamil crater (Egypt): ground truth for small–scale meteorite impacts on earth. Geology 39(2):179–182

    Article  Google Scholar 

  • French BM (1998) Traces of catastrophe: a handbook of shock–metamorphic effects in terrestrial meteorite impact craters. Lunar and Planetary Institute, Houston, p 120, Contribution CB–954

    Google Scholar 

  • French BM, Koeberl C (2010) The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t, and why. Earth-Sci Rev 98(1–2):123–170

    Article  Google Scholar 

  • Gad S, Kusky T (2006) Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat thematic mapper (TM). J Afr Earth Sci 44:196–202

    Article  Google Scholar 

  • Garvin JB, Schnetzler CC, Grieve RF (1992) Characteristics of large terrestrial impact structures as revealed by remote sensing studies. Tectonophysics 216(1–2):45–62

    Article  Google Scholar 

  • Grieve RAF (2005) Economic natural resource deposits at terrestrial impact structures. In: McDonald I, Boyce AJ, Butler IB, Harrington RJ, Polya DA (eds) Mineral deposits and earth evolution. Geological Society London Special Publication 248, London, pp 1–29

  • Grieve RAF (2006) Impact structures in Canada, vol 5, Geotext. Geological Association of Canada, Canada, p 210

    Google Scholar 

  • Heinrichs T, Salameh E, Khouri H (2014) The Waqf as Suwwan crater, Eastern Desert of Jordan: aspects of the deep structure of an oblique impact from reflection seismic and gravity data. Int J Earth Sci 103(1):233–252

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978

    Article  Google Scholar 

  • Hubbard BE, Sanfilipo JR (2010). An unusual circular depression in Samangan province, northern Afghanistan: impact crater, diatreme, salt diapirism or karst related? American Geophysical Union, Fall Meeting P53C–1525.

  • Koeberl C (2004) Remote sensing studies of impact craters: how to be sure? Compt Rendus Geosci 336:959–961

    Article  Google Scholar 

  • Koeberl C, Reimold WU (2005) Bosumtwi impact crater, Ghana (West Africa): an updated and revised geological map, with explanations. Jahrbuch der Geologischen Bundesanstalt 145:31–70

    Google Scholar 

  • Mansouri Daneshvar MR, Bagherzadeh A (2013) Geomorphological investigation of possible impact evidences for the crater–shaped structure of Zirouki in Samsour Desert, SE Iran. Earth Sci Inf 6(4):241–252

    Article  Google Scholar 

  • Mars JC, Rowan LC (2010) ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere 7(1):276–289

    Article  Google Scholar 

  • NASA (2011). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM). National Aeronautics and Space Administration (NASA). Earth Remote Sensing Data Analysis Center (ERSDAC).

  • Paillou P, Rosenqvist A, Malezieux JM, Reynard B, Farr T, Heggy E (2003) Discovery of a double impact crater in Libya: the astrobleme of Arkenu. C R Geosci 335(15):1059–1069

    Article  Google Scholar 

  • Paillou P, El Barkooky A, Barakat A, Malezieux JM, Reynard B, Dejax J, Heggy E (2004) Discovery of the largest impact crater field on Earth in the Gilf Kebir region, Egypt. Comptes Rendus Geosci 336:1491–1500

    Article  Google Scholar 

  • Pati JK, Reimold WU (2007) Impact cratering—fundamental process in geosciences and planetary science. J Earth Syst Sci 116(2):81–89

    Article  Google Scholar 

  • Pati JK, Prakash K, Kundu R (2009) Terrestrial impact structures and their confirmation: example from Dhala structure, central India. Earth Sci India 2(3):289–298

    Google Scholar 

  • Rajmon D (2010). Impact Database, v. 2010.1. via (http://impacts.rajmon.cz).

  • Reimold WU, Trepmann C, Simonson B (2006) Discussion: impact origin of the Ramgarh structure, Rajastan: some new evidences—by Sisodia et al. 2006. J Geol Soc India 68:561–563

    Google Scholar 

  • Schmieder M, Seyfried H, Gerel O (2013) The circular Uneged Uul structure (east Gobi basin, Mongolia)—geomorphic and structural evidence for meteorite impact into an unconsolidated coarse-clastic target? J Asian Earth Sci 64(5):58–76

    Article  Google Scholar 

  • USGS (2005). Geologic Map of Quadrangle 3264, Nawzad–Musa–Qala (423) and Dehrawat (424) Quadrangles. Compiled by Bohannon RG and Lindsay CR. United States Geological Survey Open–File Report of 2005–3264. Scale 1:250,000.

  • USGS (2006). Geologic and mineral resource map of Afghanistan. Compiled by Doebrich JL and Wahl RR. United States Geological Survey Open–File Report of 2006–1038. Scale 1:850,000.

  • USGS (2008) Airborne geophysical project of Afghanistan Isostatic Gravity Anomaly. United States Geological Survey Open–File Report of 2008–1089. Scale 1:6,000,000.

  • Wright SP, Ramsey MS (2006) Thermal infrared data analyses of meteor crater, Arizona: implications for mars spaceborne data from the thermal emission imaging system. J Geophys Res 111:E02004

    Google Scholar 

  • Wright SP, Tornabene LL, Ramsey MS (2013) Remote sensing of impact craters. In: Pierazzo E, Osinski GR (eds) Impact cratering: processes and products. Blackwell Publishing Ltd, USA, pp 194–214

    Google Scholar 

Download references

Acknowledgments

I am very grateful to the USGS web data centers for transmission of remotely sensed data and open-file reports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Mansouri Daneshvar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri Daneshvar, M. Remote sensing analysis for the possible impact structure of Lakhčak Crater in southern Afghanistan. Appl Geomat 7, 275–282 (2015). https://doi.org/10.1007/s12518-015-0164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-015-0164-1

Keywords

Navigation