Skip to main content
Log in

Application of RUSLE model for soil loss estimation of Jaipanda watershed, West Bengal

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Soil erosion is a major environmental problem due to both natural and anthropogenic factors and continuous erosion leads to land degradation. In the present study, soil loss in Jaipanda watershed of West Bengal, India is estimated employing revised universal soil loss equation (RUSLE) model and adopting integrated analysis in GIS. The factors used in RUSLE are namely the rainfall and runoff erosivity factor (R), soil erodibility factor (K), slope length and steepness factor (LS), cover and management factor (C) and support practice factor related to slope direction (P). These factors were computed from different data which have been obtained from meteorological station, soil maps, topographic maps, digital elevation model and satellite image. The five RUSLE factors were represented by raster layers in a GIS framework and then multiplied together to estimate the soil erosion rate in the study area. The study provided a reliable prediction of soil erosion rates and erosion potential zones within the watershed. The average soil loss amount for this watershed is about 0.59 tons/ha/year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jain, S. K., Kumar, S., & Varghese, J. (2001). Estimation of soil erosion for a Himalayan watershed using GIS technique. Water Resources Management, 15(1), 41–54. doi:10.1023/A:1012246029263.

    Article  Google Scholar 

  2. Demirci, A., & Karaburun, A. (2012). Estimation of soil erosion using RUSLE in a GIS framework: A case study in the Buyukcekmece Lake watershed, northwest Turkey. Environmental Earth Sciences, 66(3), 903–913. doi:10.1007/s12665-011-1300-9.

    Article  Google Scholar 

  3. Hussein, M. H., Kariem, T. H., & Othman, A. K. (2007). Predicting soil erodibility in northern Iraq using natural runoff plot data. Soil & Tillage Research, 94(1), 220–228. doi:10.1016/j.still.2006.07.012.

    Article  Google Scholar 

  4. Mohamadi, M. A., & Kavian, A. (2015). Effects of rainfall patterns on runoff and soil erosion in field plots. International Soil and Water Conservation Research, 3(4), 273–281. doi:10.1016/j.iswcr.2015.10.001.

    Article  Google Scholar 

  5. Nearing, M. A., Jetten, V., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., et al. (2005). Modeling response of soil erosion and runoff to changes in precipitation and cover. CATENA, 61(2), 131–154.

    Article  Google Scholar 

  6. Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953–961. doi:10.1016/j.gsf.2015.10.007.

    Article  Google Scholar 

  7. Narayana, D. V., & Babu, R. (1983). Estimation of soil erosion in India. Journal of Irrigation and Drainage Engineering, 109(4), 419–434. doi:10.1061/(ASCE)0733-9437(1983).

    Article  Google Scholar 

  8. Pandey, A., Chowdary, V. M., & Mal, B. C. (2007). Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resources Management, 21(4), 729–746. doi:10.1007/s11269-006-9061-z.

    Article  Google Scholar 

  9. Prasannakumar, V., Vijith, H., Abinod, S., & Geetha, N. (2012). Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using revised universal soil loss equation (RUSLE) and geo-information technology. Geoscience Frontiers, 3(2), 209–215. doi:10.1016/j.gsf.2011.11.003.

    Article  Google Scholar 

  10. Kouli, M., Soupios, P., & Vallianatos, F. (2009). Soil erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental Geology, 57(3), 483–497. doi:10.1007/s00254-008-1318-9.

    Article  Google Scholar 

  11. Merritt, W. S., Letcher, R. A., & Jakeman, A. J. (2003). A review of erosion and sediment transport models. Environmental Modelling and Software, 18(8), 761–799. doi:10.1016/S1364-8152(03)00078-1.

    Article  Google Scholar 

  12. Jha, M. K., & Paudel, R. C. (2010). Erosion predictions by empirical models in a mountainous watershed in Nepal. Journal of Spatial Hydrology, 10(1), 89–102.

    Google Scholar 

  13. Karaburun, A. (2010). Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed. Ozean Journal of applied sciences, 3(1), 77–85.

    Google Scholar 

  14. Bhattarai, R., & Dutta, D. (2007). Estimation of soil erosion and sediment yield using GIS at catchment scale. Water Resources Management, 21(10), 1635–1647. doi:10.1007/s11269-006-9118-z.

    Article  Google Scholar 

  15. Lal, R. (2001). Soil degradation by erosion. Land Degradation and Development, 12(6), 519–539. doi:10.1002/ldr.472.

    Article  Google Scholar 

  16. Koloa, C., & Samanta, S. (2015). Spatio-temporal soil loss pattern analysis of Markham River basin through remote sensing and GIS techniques. Melanesian Journal of Geomatics and Property Studies, 1, 56–68.

    Google Scholar 

  17. Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses-a guide to conservation planning. Hyattsville: USDA.

    Google Scholar 

  18. Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE) (Vol. 703). Washington, DC: US Government Printing Office.

    Google Scholar 

  19. Onyando, J. O., Kisoyan, P., & Chemelil, M. C. (2005). Estimation of potential soil erosion for river perkerra catchment in Kenya. Water Resources Management, 19(2), 133–143. doi:10.1007/s11269-005-2706-5.

    Article  Google Scholar 

  20. Irvem, A., Topaloğlu, F., & Uygur, V. (2007). Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. Journal of Hydrology, 336(1), 30–37. doi:10.1016/j.jhydrol.2006.12.009.

    Article  Google Scholar 

  21. Erdogan, E. H., Erpul, G., & Bayramin, İ. (2007). Use of USLE/GIS methodology for predicting soil loss in a semiarid agricultural watershed. Environmental Monitoring and Assessment, 131(1), 153–161. doi:10.1007/s10661-006-9464-6.

    Article  Google Scholar 

  22. Yue-Qing, X., Xiao-Mei, S., Xiang-Bin, K., Jian, P., & Yun-Long, C. (2008). Adapting the RUSLE and GIS to model soil erosion risk in a mountains karst watershed, Guizhou Province, China. Environmental monitoring and assessment, 141(1), 275–286. doi:10.1007/s10661-007-9894-9.

    Article  Google Scholar 

  23. Terranova, O., Antronico, L., Coscarelli, R., & Iaquinta, P. (2009). Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology, 112(3), 228–245. doi:10.1016/j.geomorph.2009.06.009.

    Article  Google Scholar 

  24. Shinde, V., Tiwari, K. N., & Singh, M. (2010). Prioritization of micro watersheds on the basis of soil erosion hazard using remote sensing and geographic information system. International Journal of Water Resources and Environmental Engineering, 5(2), 130–136.

    Google Scholar 

  25. Naqvi, H. R., Devi, L. M., & Siddiqui, M. A. (2012). Soil loss prediction and prioritization based on revised universal soil loss estimation (RUSLE) model using geospatial technique. International Journal of Environmental Protection, 2(3), 39–43.

    Google Scholar 

  26. Samanta, S., Koloa, C., Pal, D. K., & Palsamanta, B. (2016). Estimation of potential soil erosion rate using RUSLE and E30 model. Modeling Earth Systems and Environment, 2(3), 149. doi:10.1007/s40808-016-0206-7.

    Article  Google Scholar 

  27. Zhou, W., & Wu, B. F. (2008). Assessment of soil erosion and sediment delivery ratio using remote sensing and GIS: A case study of upstream Chaobaihe River catchment, North China. International Journal of Sediment Research, 23(2), 167–173. doi:10.1016/S1001-6279(08)60016-5.

    Article  Google Scholar 

  28. Jaiswal, R. K., Mukherjee, S., Krishnamurthy, J., & Saxena, R. (2003). Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development–an approach. International Journal of Remote Sensing, 24(5), 993–1008. doi:10.1080/01431160210144543.

    Article  Google Scholar 

  29. KICT. (1992). The development of selection standard for calculation method of unit sediment yield in river. KICT 89-WR-113 Research paper (in Korean).

  30. Moore, I. D., & Burch, G. J. (1986). Physical basis of the length-slope factor in the universal soil loss equation. Soil Science Society of America Journal, 50(5), 1294–1298. doi:10.2136/sssaj1986.03615995005000050042x.

    Article  Google Scholar 

  31. Donahue, R. L., Miller, R. W., & Shickluna, J. C. (1978). Soils—An introduction to soils and plant growth. Soil Science, 125(4), 271.

    Article  Google Scholar 

  32. Rouse Jr, J., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA Special Publication, 309–317.

  33. Jensen, J. R. (2005). Introductory digital image processing: A remote sensing perspective (pp. 311–313). New Jersey: Pearson Prentice Hall.

    Google Scholar 

  34. Van der Knijff, J. M., Jones, R. J. A., & Montanarella, L. (2000). Soil erosion risk assessment in Europe. European Soil Bureau, 1–27.

  35. Renard, K. G., & Foster, G. R. (1983). Soil conservation: Principles of erosion by water. Dryland Agriculture, 155–176.

  36. Shit, P. K., Nandi, A. S., & Bhunia, G. S. (2015). Soil erosion risk mapping using RUSLE model on Jhargram sub-division at West Bengal in India. Modeling Earth Systems and Environment, 1(3), 28. doi:10.1007/s40808-015-0032-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Chandra Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S.C., Shit, M. Application of RUSLE model for soil loss estimation of Jaipanda watershed, West Bengal. Spat. Inf. Res. 25, 399–409 (2017). https://doi.org/10.1007/s41324-017-0107-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-017-0107-5

Keywords

Navigation