Skip to main content
Log in

Urban heat island explored by co-relationship between land surface temperature vs multiple vegetation indices

  • Published:
Spatial Information Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Land surface temperature (LST), land use/land cover (LU/LC) and vegetation parameters are a substantial factor in worldwide climate change studies framework. This study of investigating urban heat islands based on thermal remote sensing data. Thermal infrared remote sensing proved its capability in monitoring temperature and affecting microclimate in urban areas. In the present study have relationships among the multiple vegetation indices, land use/land cover and LST using remote sensing techniques in the Saranda forest state of Jharkhand. Normalized difference vegetation index (NDVI), Soil-adjusted vegetation index (SAVI), Ratio vegetation index (RVI) and Normalized difference built-up index (NDBI) are used in this study. The study work has been done on the correlation of the association among the different vegetation indices, land use/land cover, and land surface temperature. The result shows that the external temperature an impact on surfaces of self-heating (hot spots) areas. The relationship between LST and NDVI result shows the negative correlation. The NDVI proposes that the green land can deteriorate the effect on mining, urban heat island while we apparent the positive relationship between LST and NDBI. This study demonstrates that the growth of the active mining, the industrial area significantly decreases the vegetation areas, hence grow the surface temperature. This study also shows that the external temperature has an impact on surfaces of self-heating (hot spots) areas. Finally, the accuracy of proposed multiple indexes is evaluated by using DGPS field survey points over the study area. This analysis demonstrates the potential applicability of the methodology for climate modeling framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jackson, R. D., & Huete, A. R. (1991). Interpreting vegetation indices. Preventive Veterinary Mediccine, 11, 185–200.

    Article  Google Scholar 

  2. Carlson, T. N., Gillies, R. R., & Perry, E. M. (1994). A method to make use of thermal infrared temperature and NDVI measurements. Remote Sensing Reviews, 9, 161–173.

    Article  Google Scholar 

  3. Gallo, K. P., Tarpley, J. D., McNab, A. L., & Karl, T. R. (1995). Assessment of urban heat islands: a satellite perspective. Atmospheric Research, 37(1), 37–43.

    Article  Google Scholar 

  4. Nichol, J. E. (1996). High-resolution surface temperature patterns related to urban morphology in a tropical city: A satellite-based study. Journal of Applied Meteorology, 35, 135–146.

    Article  Google Scholar 

  5. Gillies, R. R., Kustas, W. P., & Humes, K. S. (1997). A verification of the triangle method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface e. International Journal of Remote Sensing, 18(15), 3145–3166.

    Article  Google Scholar 

  6. Owen, T. W., Carlson, T. N., & Gillies, R. R. (1998). An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. International Journal of Remote Sensing, 19(9), 1663–1681.

    Article  Google Scholar 

  7. Nichol, J. (1995). Monitoring tropical rain forest microclimate. Photogrammetric Engineering and Remote Sensing, 61, 1159–1165.

    Google Scholar 

  8. Wagrowski, D. M., & Hites, R. A. (1996). Polycyclic aromatic hydrocarbon accumulation in urban, suburban, and rural vegetation. Environmental Science and Technology, 31(1), 279–282.

    Article  Google Scholar 

  9. Southworth, J. (2004). An assessment of Landsat TM band 6 thermal data for analysing land cover in tropical dry forest regions. International Journal of Remote Sensing, 25(4), 689–706.

    Article  Google Scholar 

  10. Mrόz, M., & Sobieraj, A. (2004). Comparison of several vegetation indices calculated on the basis of a seasonal SPOT XS time series, and their suitability for land cover and agricultural crop identification. Technical Sciences, 7(7), 39–66.

    Google Scholar 

  11. Stone, B., Jr. (2005). Urban heat and air pollution: an emerging role for planners in the climate change debate. Journal of the American Planning Association, 71(1), 13–25.

    Article  Google Scholar 

  12. Alavipanah, S. K., Saradjian, M., Savaghebi, G. R., Komaki, C. B., Moghimi, E., & Karimpur Reyhan, M. (2010). Land surface temperature in the yardang region of Lut Desert (Iran) based on field measurements and landsat thermal data. Journal of Agricultural Science and Technology, 9, 287–303.

    Google Scholar 

  13. Yue, W., Xu, J., Tan, W., & Xu, L. (2007). The relationship between land surface temperature and NDVI with remote sensing: Application to Shanghai Landsat 7 ETM + data. International Journal of Remote ensing, 28(15), 3205–3226.

    Article  Google Scholar 

  14. Wei, M. A., Yun-hao, C., & Ji, Z. (2008). Quantitative analysis of land surface temperature–vegetation indexes relationship based on remote sensing. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII((Part31 B6b)), 261–264.

    Google Scholar 

  15. Cristóbal, J., Jiménez-Muñoz, J. C., Sobrino, J. A., Ninyerola, M., & Pons, X. (2009). Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature. Journal of Geophysical Research: Atmospheres, 114(D8).

  16. Ramachandra, T. V., & Kumar, U. (2009). Land surface temperature with land cover dynamics: Multi-resolution, spatio-temporal data analysis of greater Bangalore, India. International Journal of Geoinformatics, 5(3), 1.

    Google Scholar 

  17. Rashed, T., & Jürgens, C. (Eds.). (2010). Remote sensing of urban and suburban areas (Vol. 10). New York: Springer.

    Google Scholar 

  18. James, M., & Charles, N. (2014). Spatial-temporal effects of land use changes on land surface temperature in Nairobi. In Proceedings of sustainable research and innovation conference (pp. 26–29).

  19. Lawrence, P. J., & Chase, T. N. (2007). Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). Journal of Geophysical Research: Biogeosciences, 112(G1).

  20. Bonan, G. B., Oleson, K. W., Vertenstein, M., Levis, S., Zeng, X., Dai, Y., et al. (2002). The land surface climatology of the community land model coupled to the NCAR community climate model*. Journal of Climate, 15(22), 3123–3149.

    Article  Google Scholar 

  21. Vlassova, L., & Pérez-Cabello, F. (2016). Effects of post-fire wood management strategies on vegetation recovery and land surface temperature (LST) estimated from Landsat images. International Journal of Applied Earth Observation and Geoinformation, 44, 171–183.

    Article  Google Scholar 

  22. Lau, W. K., Kim, M. K., Kim, K. M., & Lee, W. S. (2010). Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environmental Research Letters, 5(2), 025204.

    Article  Google Scholar 

  23. Li, Z. L., Tang, B. H., Wu, H., Ren, H., Yan, G., Wan, Z., et al. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14–37.

    Article  Google Scholar 

  24. Wan, Z., Wang, P., & Li, X. (2004). Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. International Journal of Remote Sensing, 25(1), 61–72.

    Article  Google Scholar 

  25. Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483.

    Article  Google Scholar 

  26. Alsultan, S., Lim, H. S., MatJafri, M. Z., & Abdullah, K. (2005). An algorithm for land surface temperature analysis of remote sensing image coverage over AlQassim, Saudi Arabia. In Proceeding of the FIG working week 2005 and 8th international conference for global spatial data infrastructure (GSDI8)From pharaohs to geoinformatics, intercontinental semiramis.

  27. Chen, X. L., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133–146.

    Article  Google Scholar 

  28. Alipour, T., Sarajian, M. R., & Esmaeily, A. (2003). Land surface temperature estimation from thermal band of landsat sensor, case study: Alashtar City. The International Achieves of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 4.

    Google Scholar 

  29. Soliman, A., Duguay, C., Saunders, W., & Hachem, S. (2012). Pan-arctic land surface temperature from MODIS and AATSR: Product development and intercomparison. Remote Sensing, 4(12), 3833–3856.

    Article  Google Scholar 

  30. Barsi, J. A., Irons, J. R., & Dwyer, J. L. (2012). The next Landsat satellite: The Landsat data continuity mission. Remote Sensing of Environment, 122, 11–21.

    Article  Google Scholar 

  31. Aeronautics, N. (1972). Landsat 7 Science Data Users Handbook Landsat 7 Science Data Users Handbook (pp. 3–11).

  32. Stathopoulou, M., & Cartalis, C. (2007). Daytime urban heat islands from Landsat ETM + and Corine land cover data: An application to major cities in Greece. Solar Energy, 81(3), 358–368.

    Article  Google Scholar 

  33. Kayet, N., Pathak, K., Chakrabarty, A., & Sahoo, S. (2016). Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand. Modeling Earth Systems and Environment, 2(3), 1–10.

    Article  Google Scholar 

  34. Shahkooeei, E., Arekhi, S., & Kani, A. N. (2014). Remote sensing and GIS for mapping and monitoring land cover and land use changes using support vector machine algorithm (Case study: Ilam dam watershed). International Research Journal of Applied and Basic Sciences, 8(4), 464–473.

    Google Scholar 

  35. Cohen, J. L., Furtado, J. C., Barlow, M., Alexeev, V. A., & Cherry, J. E. (2012). Asymmetric seasonal temperature trends. Geophysical Research Letters, 39(4), L04705.

    Article  Google Scholar 

  36. Bogoliubova, A., & Tymków, P.(2014). Accuracy assessment of automatic image processing for land cover classification of St. Petersburg protected area. Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum, 13(1–2).

  37. Congalton, R. G. (1991). Remote sensing and geographic information system data integration: Error sources and. Photogrammetric Engineering and Remote Sensing, 57(6), 677–687.

    Google Scholar 

  38. Zimmermann, B., Elsenbeer, H., & De Moraes, J. M. (2006). The influence of land-use changes on soil hydraulic properties: Implications for runoff generation. Forest Ecology and Management, 222(1), 29–38.

    Article  Google Scholar 

  39. Sobrino, J. A., Jiménez-Mun˜oz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434–440.

    Article  Google Scholar 

  40. Envi software vegetation analysis tutorial. (http://www.harrisgeospatial.com/docs/BroadbandGreenness.html#NDVI).

  41. Justice, C. O., Townshend, J. R. G., Vermote, E. F., Masuoka, E., Wolfe, R. E., Saleous, N., et al. (2002). An overview of MODIS Land data processing and product status. Remote Sensing of Environment, 83(1), 3–15.

    Article  Google Scholar 

  42. Los, S. O., Collatz, G. J., Bounoua, L., Sellers, P. J., & Tucker, C. J. (2001). Global interannual variations in sea surface temperature and land surface vegetation, air temperature, and precipitation. Journal of Climate, 14(7), 1535–1549.

    Article  Google Scholar 

  43. LU, D., & Weng, Q. (2006). Use of impervious surface in urban land-use classification. Remote Sensing of Environment, 102(1), 146–160.

    Article  Google Scholar 

  44. Potter, K. M. (2013). Large-scale patterns of forest fire occurrence in the conterminous United States and Alaska, 2009.

  45. Scott, L. M., & Janikas, M. V. (2010). Spatial statistics in ArcGIS. In Handbook of applied spatial analysis (pp. 27–41). Berlin: Springer.

Download references

Acknowledgments

The authors are thankful to SAIL and DFO of Saranda forest for their financial support and providing necessary data. The authors would like to thank Indian Institute of Technology Kharagpur and Vidyasagar University for its constant support and providing wonderful platform for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan Kayet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayet, N., Pathak, K., Chakrabarty, A. et al. Urban heat island explored by co-relationship between land surface temperature vs multiple vegetation indices. Spat. Inf. Res. 24, 515–529 (2016). https://doi.org/10.1007/s41324-016-0049-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-016-0049-3

Keywords

Navigation