Skip to main content
Log in

Magnetic nanomaterials for preconcentration and removal of emerging contaminants in the water environment

  • Mini-Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Along with the increasingly detected drug residues, pharmaceutical products, personal care products, pesticides, herbicides, etc., in the water environment, there is an increasing concern over water pollution caused by these emerging contaminants (ECs) that are not regulated under current environmental laws. Their impacts on the environment and human health are poorly understood despite their trace concentrations (usually at pg/L, ng/L, or µg/L) in the natural environment. This is because ECs in real water systems may transform into multiple metabolite compounds; they might change properties (chemical/physical) when there are any changes in their surrounding conditions (pH, temperature, etc.). The use of nano-scaled magnetic materials is quite popular due to their flexibility to be modified and separation convenience via an external magnetic force. When nano-scaled magnetic materials are applied in solid-phase extraction (SPE), a preconcentration/sample preparation method (magnetic solid-phase extraction, M-SPE) with satisfactory analytical features is developed. M-SPE is widely explored and developed to serve as an integral efficient analytical tool for environmental monitoring of ECs, particularly for wastewater samples discharged from residential, hospital, and pharmaceutical industrial areas. Likewise, nano-scaled magnetic materials have also been used in many investigational studies on removing ECs. The role and effectiveness of nano-scaled magnetic materials in treating ECs via adsorption and photocatalytic degradation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sauvé S, Desrosiers M (2014) A review of what is an emerging contaminant. Chem Cent J 8(1):1–7. https://doi.org/10.1186/1752-153X-8-15

    Article  Google Scholar 

  2. Touraud E, Roig B, Sumpter JP, Coetsier C (2011) Drug residues and endocrine disruptors in drinking water: risk for humans? Int J Hyg Environ Health 214(6):437–441

    Article  Google Scholar 

  3. Bottoni P, Caroli S, Caracciolo AB (2010) Pharmaceuticals as priority water contaminants. Toxicol Environ Chem 92(3):549–565

    Article  Google Scholar 

  4. Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214(6):442–448

    Article  Google Scholar 

  5. Naidu R, Espana VAA, Liu Y, Jit J (2016) Emerging contaminants in the environment: risk-based analysis for better management. Chemosphere 154:350–357

    Article  Google Scholar 

  6. Jiang J-Q, Zhou Z, Sharma V (2013) Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water—a review from global views. Microchem J 110:292–300

    Article  Google Scholar 

  7. Oldenkamp R, Beusen AH, Huijbregts MA (2019) Aquatic risks from human pharmaceuticals–modelling temporal trends of carbamazepine and ciprofloxacin at the global scale. Environ Res Lett 14:034003

    Article  Google Scholar 

  8. Itoh H, Sugimoto T (2003) Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J Colloid Interface Sci 265(2):283–295. https://doi.org/10.1016/S0021-9797(03)00511-3

    Article  Google Scholar 

  9. Gonzalez-Fernandez M, Torres T, Andrés-Vergés M, Costo R, De La Presa P, Serna C, Morales M, Marquina C, Ibarra M, Goya G (2009) Magnetic nanoparticles for power absorption: optimizing size, shape and magnetic properties. J Solid State Chem 182(10):2779–2784

    Article  Google Scholar 

  10. Gavilán H, Kowalski A, Heinke D, Sugunan A, Sommertune J, Varón M, Bogart LK, Posth O, Zeng L, González-Alonso D (2017) Colloidal flower-shaped iron oxide nanoparticles: synthesis strategies and coatings. Part Part Syst Charact 34(7):1700094

    Article  Google Scholar 

  11. Quaresma P, Osório I, Dória G, Carvalho PA, Pereira A, Langer J, Araújo JP, Pastoriza-Santos I, Liz-Marzán LM, Franco R (2014) Star-shaped magnetite@ gold nanoparticles for protein magnetic separation and SERS detection. RSC Adv 4(8):3659–3667

    Article  Google Scholar 

  12. Roca AG, Gutiérrez L, Gavilán H, Brollo MEF, Veintemillas-Verdaguer S, del Puerto MM (2019) Design strategies for shape-controlled magnetic iron oxide nanoparticles. Adv Drug Deliv Rev 138:68–104

    Article  Google Scholar 

  13. Gil S, Correia CR, Mano JF (2015) Magnetically labeled cells with surface-modified Fe3O4 spherical and rod-shaped magnetic nanoparticles for tissue engineering applications. Adv Healthc Mater 4(6):883–891

    Article  Google Scholar 

  14. Roca AG, Gutiérrez L, Gavilán H, Fortes Brollo ME, Veintemillas-Verdaguer S, Morales MdP (2019) Design strategies for shape-controlled magnetic iron oxide nanoparticles. Adv Drug Deliv Rev 138:68–104. https://doi.org/10.1016/j.addr.2018.12.008

    Article  Google Scholar 

  15. Agnihotri P, Lad V (2020) Magnetic nanofluid: synthesis and characterization. Chem Pap 74(9):3089–3100

    Article  Google Scholar 

  16. Abbaspour N, Haghshenasfard M, Talaei M, Amini H (2020) Experimental investigation of using nanofluids in the gas absorption in a venturi scrubber equipped with a magnetic field. J Mol Liq 303:112689

    Article  Google Scholar 

  17. Shabatina TI, Vernaya OI, Shabatin VP, Melnikov MY (2020) Magnetic nanoparticles for biomedical purposes: modern trends and prospects. Magnetochemistry 6(3):30

    Article  Google Scholar 

  18. Khan FSA, Mubarak NM, Khalid M, Walvekar R, Abdullah EC, Mazari SA, Nizamuddin S, Karri RR (2020) Magnetic nanoadsorbents’ potential route for heavy metals removal—a review. Environ Sci Pollut Res 27(19):24342–24356

    Article  Google Scholar 

  19. Polliotto V, Pomilla FR, Maurino V, Marcì G, Bianco Prevot A, Nisticò R, Magnacca G, Paganini MC, Ponce Robles L, Perez L, Malato S (2019) Different approaches for the solar photocatalytic removal of micro-contaminants from aqueous environment: titania vs. hybrid magnetic iron oxides. Catal Today 328:164–171. https://doi.org/10.1016/j.cattod.2019.01.044

    Article  Google Scholar 

  20. Zhen Y, Ning Z, Shaopeng Z, Yayi D, Xuntong Z, Jiachun S, Weiben Y, Yuping W, Jianqiang C (2015) A pH-and temperature-responsive magnetic composite adsorbent for targeted removal of nonylphenol. ACS Appl Mater Interfaces 7(44):24446–24457

    Article  Google Scholar 

  21. Reguyal F, Sarmah AK, Gao W (2017) Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution. J Hazard Mater 321:868–878. https://doi.org/10.1016/j.jhazmat.2016.10.006

    Article  Google Scholar 

  22. Palomino D, Stoll S (2013) Fulvic acids concentration and pH influence on the stability of hematite nanoparticles in aquatic systems. J Nanoparticle Res 15(2):1428. https://doi.org/10.1007/s11051-013-1428-5

    Article  Google Scholar 

  23. Nurdin I (2016) The effect of pH and time on the stability of superparamagnetic maghemite nanoparticle suspensions. In: MATEC web of conferences. EDP Sciences, p 01001

  24. Özdemir Ö, Banerjee SK (1984) High temperature stability of maghemite (γ-Fe2O3). Geophys Res Lett 11(3):161–164

    Article  Google Scholar 

  25. Ament K, Wagner DR, Meij FE, Wagner FE, Breu J (2020) High temperature stable maghemite nanoparticles sandwiched between hectorite nanosheets. Z Anorg Allg Chem 646(14):1110–1115

    Article  Google Scholar 

  26. Cendrowski K, Sikora P, Zielinska B, Horszczaruk E, Mijowska E (2017) Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica. Appl Surf Sci 407:391–397. https://doi.org/10.1016/j.apsusc.2017.02.118

    Article  Google Scholar 

  27. Noguera-Oviedo K, Aga DS (2016) Lessons learned from more than two decades of research on emerging contaminants in the environment. J Hazard Mater 316:242–251

    Article  Google Scholar 

  28. Nguyen HT, Thai PK, Kaserzon SL, O’Brien JW, Eaglesham G, Mueller JF (2018) Assessment of drugs and personal care products biomarkers in the influent and effluent of two wastewater treatment plants in Ho Chi Minh City, Vietnam. Sci Total Environ 631:469–475

    Article  Google Scholar 

  29. Zhang Y, Zhang T, Guo C, Lv J, Hua Z, Hou S, Zhang Y, Meng W, Xu J (2017) Drugs of abuse and their metabolites in the urban rivers of Beijing, China: occurrence, distribution, and potential environmental risk. Sci Total Environ 579:305–313

    Article  Google Scholar 

  30. Galea S, Rudenstine S, Vlahov D (2005) Drug use, misuse, and the urban environment. Drug Alcohol Rev 24(2):127–136

    Article  Google Scholar 

  31. Devault DA, Néfau T, Levi Y, Karolak S (2017) The removal of illicit drugs and morphine in two waste water treatment plants (WWTPs) under tropical conditions. Environ Sci Pollut Res 24(33):25645–25655

    Article  Google Scholar 

  32. Alygizakis NA, Gago-Ferrero P, Borova VL, Pavlidou A, Hatzianestis I, Thomaidis NS (2016) Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater. Sci Total Environ 541:1097–1105

    Article  Google Scholar 

  33. Hu P, Guo C, Zhang Y, Lv J, Zhang Y, Xu J (2019) Occurrence, distribution and risk assessment of abused drugs and their metabolites in a typical urban river in north China. Front Environ Sci Eng 13(4):56

    Article  Google Scholar 

  34. Lamastra L, Balderacchi M, Trevisan M (2016) Inclusion of emerging organic contaminants in groundwater monitoring plans. MethodsX 3:459–476. https://doi.org/10.1016/j.mex.2016.05.008

    Article  Google Scholar 

  35. Qian Y, Wang X, Wu G, Wang L, Geng J, Yu N, Wei S (2021) Screening priority indicator pollutants in full-scale wastewater treatment plants by non-target analysis. J Hazard Mater 414:125490. https://doi.org/10.1016/j.jhazmat.2021.125490

    Article  Google Scholar 

  36. Vella K (2018) Commission Implementing Decision (EU) 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018D0840. Brussels

  37. Zhao L, Deng J, Sun P, Liu J, Ji Y, Nakada N, Qiao Z, Tanaka H, Yang Y (2018) Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: systematic review and bibliometric analysis. Sci Total Environ 627:1253–1263. https://doi.org/10.1016/j.scitotenv.2018.02.006

    Article  Google Scholar 

  38. Arora B, Attri P (2020) Carbon nanotubes (CNTs): a potential nanomaterial for water purification. J Compos Sci 4(3):135

    Article  Google Scholar 

  39. Rojas S, Horcajada P (2020) Metal–organic frameworks for the removal of emerging organic contaminants in water. Chem Rev 120(16):8378–8415

    Article  Google Scholar 

  40. Panahi HKS, Dehhaghi M, Ok YS, Nizami A-S, Khoshnevisan B, Mussatto SI, Aghbashlo M, Tabatabaei M, Lam SS (2020) A comprehensive review of engineered biochar: production, characteristics, and environmental applications. J Clean Prod 270:122462

    Article  Google Scholar 

  41. Shareen Doak MGV, Martin Clift (2019) Nanomaterials are changing the world—but we still don’t have adequate safety tests for them. https://theconversation.com/nanomaterials-are-changing-the-world-but-we-still-dont-have-adequate-safety-tests-for-them-101748

  42. Ghadimi M, Zangenehtabar S, Homaeigohar S (2020) An overview of the water remediation potential of nanomaterials and their ecotoxicological impacts. Water 12(4):1150

    Article  Google Scholar 

  43. Palma D, Bianco Prevot A, Brigante M, Fabbri D, Magnacca G, Richard C, Mailhot G, Nisticò R (2018) New insights on the photodegradation of caffeine in the presence of bio-based substances-magnetic iron oxide hybrid nanomaterials. Materials 11(7):1084

    Article  Google Scholar 

  44. Kumar A, Khan M, Fang L, Lo IMC (2019) Visible-light-driven N-TiO2@SiO2@Fe3O4 magnetic nanophotocatalysts: synthesis, characterization, and photocatalytic degradation of PPCPs. J Hazard Mater 370:108–116. https://doi.org/10.1016/j.jhazmat.2017.07.048

    Article  Google Scholar 

  45. Hassandoost R, Pouran SR, Khataee A, Orooji Y, Joo SW (2019) Hierarchically structured ternary heterojunctions based on Ce3+/ Ce4+ modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visible-light-active photocatalysts for decontamination of oxytetracycline. J Hazard Mater 376:200–211. https://doi.org/10.1016/j.jhazmat.2019.05.035

    Article  Google Scholar 

  46. Sheikholeslami Z, Yousefi Kebria D, Qaderi F (2019) Investigation of photocatalytic degradation of BTEX in produced water using γ-Fe2O3 nanoparticle. J Therm Anal Calorim 135(3):1617–1627. https://doi.org/10.1007/s10973-018-7381-x

    Article  Google Scholar 

  47. Singh V, Srivastava VC (2020) Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant. Environ Pollut 259:113822. https://doi.org/10.1016/j.envpol.2019.113822

    Article  Google Scholar 

  48. Liu H, Xu G, Li G (2020) The characteristics of pharmaceutical sludge-derived biochar and its application for the adsorption of tetracycline. Sci Total Environ 747:141492. https://doi.org/10.1016/j.scitotenv.2020.141492

    Article  Google Scholar 

  49. Gupta A, Garg A (2019) Adsorption and oxidation of ciprofloxacin in a fixed bed column using activated sludge derived activated carbon. J Environ Manag 250:109474

    Article  Google Scholar 

  50. He X, Zhang YX, Shen MC, Tian Y, Zheng KX, Zeng GM (2017) Vermicompost as a natural adsorbent: evaluation of simultaneous metals (Pb, Cd) and tetracycline adsorption by sewage sludge-derived vermicompost. Environ Sci Pollut Res 24:8375–8384. https://doi.org/10.1007/s11356-017-8529-0

    Article  Google Scholar 

  51. Jain A, Kumari S, Agarwal S, Khan S (2021) Water purification via novel nano-adsorbents and their regeneration strategies. Process Saf Environ Prot 152:441–454

    Article  Google Scholar 

  52. Nodeh HR, Kamboh MA, Ibrahim WAW, Jume BH, Sereshti H, Sanagi MM (2019) Equilibrium, kinetic and thermodynamic study of pesticides removal from water using novel glucamine-calix[4]arene functionalized magnetic graphene oxide. Environ Sci: Process Impacts 21:714–726

    Google Scholar 

  53. Kamboh MA, Ibrahim WAW, Nodeh HR, Sanagi MM, Sherazi STH (2016) The removal of organophosphorus pesticides from water using a new amino-substituted calixarene-based magnetic sporopollenin. New J Chem 40(4):3130–3138

    Article  Google Scholar 

  54. Mackenzie G, Boa AN, Diego-Taboada A, Atkin SL, Sathyapalan T (2015) Sporopollenin, the least known yet toughest natural biopolymer. Front Mater. https://doi.org/10.3389/fmats.2015.00066

    Article  Google Scholar 

  55. Alhashimi HA, Aktas CB (2017) Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis. Resour Conserv Recycl 118:13–26. https://doi.org/10.1016/j.resconrec.2016.11.016

    Article  Google Scholar 

  56. Nanda S, Dalai AK, Berruti F, Kozinski JA (2016) Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valori 7(2):201–235

    Article  Google Scholar 

  57. Thompson KA, Shimabuku KK, Kearns JP, Knappe DR, Summers RS, Cook SM (2016) Environmental comparison of biochar and activated carbon for tertiary wastewater treatment. Environ Sci Technol 50(20):11253–11262

    Article  Google Scholar 

  58. Han Z, Sani B, Mrozik W, Obst M, Beckingham B, Karapanagioti HK, Werner D (2015) Magnetite impregnation effects on the sorbent properties of activated carbons and biochars. Water Res 70:394–403. https://doi.org/10.1016/j.watres.2014.12.016

    Article  Google Scholar 

  59. Shan D, Deng S, Zhao T, Wang B, Wang Y, Huang J, Yu G, Winglee J, Wiesner MR (2016) Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J Hazard Mater 305:156–163

    Article  Google Scholar 

  60. Dotto GL, McKay G (2020) Current scenario and challenges in adsorption for water treatment. J Environ Chem Eng 8(4):103988

    Article  Google Scholar 

  61. Alizadeh Fard M, Barkdoll B (2018) Using recyclable magnetic carbon nanotube to remove micropollutants from aqueous solutions. J Mol Liq 249:193–202. https://doi.org/10.1016/j.molliq.2017.11.039

    Article  Google Scholar 

  62. Elci SG (2021) Determination of cobalt in food by magnetic solid-phase extraction (MSPE) preconcentration by polyaniline (PANI) and polythiophene (PTH) coated magnetic nanoparticles (MNPs) and microsample injection system–flame atomic absorption spectrometry (MIS-FAAS). Instrum Sci Technol 49(3):258–275

    Article  Google Scholar 

  63. Alam S, Srivastava N, Iqbal N, Saini MK, Kumar J (2021) Magnetic solid-phase extraction (MSPE) using magnetite-based core-shell nanoparticles with silica network (SiO2) coupled with GC-MS/MS analysis for determination of multiclass pesticides in water. J AOAC Int 104(3):633–644

    Article  Google Scholar 

  64. Liu L, Yang M, He M, Liu T, Chen F, Li Y, Feng X, Zhang Y, Zhang F (2020) Magnetic solid phase extraction sorbents using methyl-parathion and quinalphos dual-template imprinted polymers coupled with GC-MS for class-selective extraction of twelve organophosphorus pesticides. Microchim Acta 187(9):1–12

    Article  Google Scholar 

  65. Mpupa A, Selahle SK, Mizaikoff B, Nomngongo PN (2021) Recent advances in solid-phase extraction (SPE) based on molecularly imprinted polymers (MIPs) for analysis of hormones. Chemosensors 9(7):151

    Article  Google Scholar 

  66. El-Sheikh AH, Qawariq RF, Abdelghani JI (2019) Adsorption and magnetic solid-phase extraction of NSAIDs from pharmaceutical wastewater using magnetic carbon nanotubes: effect of sorbent dimensions, magnetite loading and competitive adsorption study. Environ Technol Innov 16:100496

    Article  Google Scholar 

  67. Hu B, He M, Chen B (2020) 9-Magnetic nanoparticle sorbents. In: Poole CF (ed) Solid-phase extraction. Elsevier, Amsterdam, pp 235–284. https://doi.org/10.1016/B978-0-12-816906-3.00009-1

    Chapter  Google Scholar 

  68. Abd Wahib SM, Wan Ibrahim WA, Sanagi MM, Kamboh MA, Abdul Keyon AS (2018) Magnetic sporopollenin-cyanopropyltriethoxysilane-dispersive micro-solid phase extraction coupled with high performance liquid chromatography for the determination of selected non-steroidal anti-inflammatory drugs in water samples. J Chromatogr A 1532:50–57

    Article  Google Scholar 

  69. Yn D, Shen J, Liu J, Wei Y, Wang C (2018) A magnetic adsorbent grafted with pendant naphthyl polymer brush for enrichment of the nonsteroidal anti-inflammatory drugs indomethacin and diclofenac. Microchim Acta 185(8):370

    Article  Google Scholar 

  70. Gałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal Chem 50:78–84

    Article  Google Scholar 

  71. Kim C, Ryu H-D, Chung EG, Kim Y, Lee J-k (2018) A review of analytical procedures for the simultaneous determination of medically important veterinary antibiotics in environmental water: sample preparation, liquid chromatography, and mass spectrometry. J Environ Manag 217:629–645

    Article  Google Scholar 

  72. Kazemi E, Dadfarnia S, Shabani AMH, Abbasi A, Vaziri MRR, Behjat A (2016) Iron oxide functionalized graphene oxide as an efficient sorbent for dispersive micro-solid phase extraction of sulfadiazine followed by spectrophotometric and mode-mismatched thermal lens spectrometric determination. Talanta 147:561–568

    Article  Google Scholar 

  73. Shi P, Ye N (2014) Magnetite–graphene oxide composites as a magnetic solid-phase extraction adsorbent for the determination of trace sulfonamides in water samples. Anal Methods 6(24):9725–9730

    Article  Google Scholar 

  74. Lian L, Zhang X, Hao J, Lv J, Wang X, Zhu B, Lou D (2018) Magnetic solid-phase extraction of fluoroquinolones from water samples using titanium-based metal-organic framework functionalized magnetic microspheres. J Chromatogr A 1579:1–8

    Article  Google Scholar 

  75. Jalilian N, Asgharinezhad AA, Ebrahimzadeh H, Molaei K, Karami S (2018) Magnetic solid phase extraction based on modified magnetite nanoparticles coupled with dispersive liquid–liquid microextraction as an efficient method for simultaneous extraction of hydrophobic and hydrophilic drugs. Chromatographia 81(11):1569–1578

    Article  Google Scholar 

  76. Ebrahimi M, Ebrahimitalab A, Es’haghi Z, Mohammadinejad A (2015) Magnetized silane-coupling agent KH-570 based solid-phase extraction followed by gas chromatography–flame ionization detection to determine venlafaxine in human hair and aqueous environmental samples. Arch Environ Contam Toxicol 68(2):412–420

    Article  Google Scholar 

  77. Zheng WY, Richardson L, Li L, Day R, Westbrook J, Baysari M (2018) Drug-drug interactions and their harmful effects in hospitalised patients: a systematic review and meta-analysis. Eur J Clin Pharmacol 74(1):15–27

    Article  Google Scholar 

  78. Monaghan N (2019) Teething products may be harmful to health. Br Dent J 227(6):485–487

    Article  Google Scholar 

  79. Ferner R, Aronson J (2019) Susceptibility to adverse drug reactions. Br J Clin Pharmacol 85:2205–2212. https://doi.org/10.1111/bcp.14015

    Article  Google Scholar 

  80. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z (2017) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46(D1):D1074–D1082

    Article  Google Scholar 

  81. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2007) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36(suppl_1):D901–D906

    Article  Google Scholar 

  82. Hassan M, Naidu R, Du J, Liu Y, Qi F (2020) Critical review of magnetic biosorbents: their preparation, application, and regeneration for wastewater treatment. Sci Total Environ 702:134893. https://doi.org/10.1016/j.scitotenv.2019.134893

    Article  Google Scholar 

  83. Lantagne D, Clasen T (2012) Point-of-use water treatment in emergency response. Waterlines 31:30–52

    Article  Google Scholar 

  84. Arvai J, Post K (2012) Risk management in a developing country context: improving decisions about point-of-use water treatment among the rural poor in Africa. Risk Anal 32(1):67–80

    Article  Google Scholar 

  85. Szatyłowicz E, Skoczko I (2019) Magnetic field usage supported filtration through different filter materials. Water 11(8):1584

    Article  Google Scholar 

  86. Szatyłowicz E, Skoczko I (2018) The use of activated alumina and magnetic field for the removal heavy metals from water. J Ecol Eng 19(3):61–67

    Article  Google Scholar 

  87. Esmaeilnezhad E, Choi HJ, Schaffie M, Gholizadeh M, Ranjbar M (2017) Characteristics and applications of magnetized water as a green technology. J Clean Prod 161:908–921

    Article  Google Scholar 

  88. Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S, Laganà A (2019) Recent applications of magnetic solid-phase extraction for sample preparation. Chromatographia 82:1–24

    Google Scholar 

  89. Li N, Jiang H-L, Wang X, Wang X, Xu G, Zhang B, Wang L, Zhao R-S, Lin J-M (2018) Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. TrAC Trends Anal Chem 102:60–74

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education (MOE), Malaysia under Fundamental Research Grant Scheme (FRGS) (FRGS/1/2019/STG01/UTM/01/2) Vote Number R.J130000.7854.5F268 and Universiti Teknologi Malaysia (UTM) under UTM Fundamental Research Vote Number Q.J130000.2554.21H56.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Aini Wan Ibrahim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, N., Wan Ibrahim, W.A., Sutirman, Z.A. et al. Magnetic nanomaterials for preconcentration and removal of emerging contaminants in the water environment. Nanotechnol. Environ. Eng. 8, 297–315 (2023). https://doi.org/10.1007/s41204-022-00296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-022-00296-4

Keywords

Navigation