Skip to main content

Advertisement

Log in

A review on facile synthesis of nanoparticles made from biomass wastes

  • Critical Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Superabsorbent hydrogels (SAHs) based on carboxymethyl cellulose (CMC) have sparked the interest of scientists and researchers due to their numerous possibilities in both hygienic and non-hygienic conditions. CMC is one of the most cost-effective and commercially viable cellulose derivatives, with several advantageous features for including high gel formation. The existence of reactive hydroxyl and carboxymethyl groups, as well as the solubility of the compound in water. The combination of superabsorbent hydrogels' high swelling capacity and CMC's non-toxicity, biocompatibility, biodegradability, renewability, solubility, availability, and reactivity has resulted in a wide range of possible applications for CMC-based superabsorbent hydrogels. This review begins by providing an overview of current developments in CMC-based SAHs by detailing their compositions, synthesis techniques, characterization, and modification processes. Second, this review introduces various unique types of CMC-based superabsorbent intelligent hydrogels that react to external stimuli such as ionic strength, heat, pH, hydrophilic organic solvent, metabolite concentration, and salt concentration. In addition, some of the possible applications of CMC-based SAHs in controlled release fertilizers and agrochemicals, water conservation, controlled medication delivery, wound dressing, and antibacterial activity are discussed. Ag-NPs, ZnO-NPs, CuO-NPs, AlO-NPs, and these polymers have failed to provide relief to people with similar symptoms. In this approach, combining these materials and nanoparticles as nanocomposites offers a different strategy to improve mechanical and antibacterial properties. As a result, efforts were made in this review to emphasize particularly important antibacterial results of these nanoparticles in recent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Gupta A, Thenganea SK, Mahajani S (2020) Kinetics of pyrolysis and gasification of the cotton stalk in the central parts of India. Fuel. https://doi.org/10.1016/j.fuel.2019.116752 (in press)

    Article  Google Scholar 

  2. Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7:163–173

    Article  Google Scholar 

  3. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7

    Article  Google Scholar 

  4. Zhao B, Rasheed HA, Ali I, Hu S (2021) Efficient enzymatic saccharification of alkaline and ionic liquid-pretreated bamboo by highly active extremozymes produced by the co-culture of two halophilic fungi. Biores Technol 319:124115

    Article  Google Scholar 

  5. Sankhla S, Sardar HH, Neogi S (2021) Greener extraction of highly crystalline and thermally stable cellulose micro-fibers from sugarcane bagasse for cellulose nano-fibrils preparation. Carbohyd Polym 251:117030

    Article  Google Scholar 

  6. Harini K, Mohan CC (2020) Isolation and characterization of micro and nanocrystalline cellulose fibers from the walnut shell, corncob and sugarcane bagasse. Int J Biol Macromol 163:1375–1383

    Article  Google Scholar 

  7. Kumar P, Barrett DM, Delwiche MJ (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  Google Scholar 

  8. Gulati I, Park JW, Maken S, Lee MG (2014) Production of carboxymethylcellulose fibers from waste lignocellulosic sawdust using NaOH/NaClO2 pretreatment. Fibers Polym 15:680–686

    Article  Google Scholar 

  9. Kumar H, Maurya KL, Gehlaut AK, Singh D, Maken S, Gaur A, Kamsonlian S (2020) Adsorptive removal of chromium(VI) from aqueous solution using binary bio-polymeric beads made from bagasse. Appl Water Sci 10:21

    Article  Google Scholar 

  10. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550

    Article  Google Scholar 

  11. Lu H, Lin X, He B, Zhao L (2020) Enhanced separation of cellulose from bamboo with a combined process of steam explosion pretreatment and alkaline-oxidative cooking. Nord Pulp Pap Res J 35:386–399

    Article  Google Scholar 

  12. Devi AS, Singh KS (2021) Carbon storage and sequestration potential in aboveground biomass of bamboos in North East India. Sci Rep 11:837

    Article  Google Scholar 

  13. Rasheed M, Jawaid M, Parveez B, Zuriyati A, Khan A (2020) Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre. Int J Biol Macromol 160:183–191

    Article  Google Scholar 

  14. Ju Z, Zhan T, Zhang H, He Q, Yuan M, Lu X (2020) Preparation of functional bamboo by combining nano-copper with hemicellulose and lignin under high voltage electric field (HVEF). Carbohyd Polym 250:116936

    Article  Google Scholar 

  15. Kumar H, Gaur A, Kumar S, Park JW (2019) Development of silver nanoparticles-loaded CMC hydrogel using bamboo as a raw material for special medical applications. Chem Pap 73:953–964

    Article  Google Scholar 

  16. Kumar H, Gehlaut AK, Gaur A, Park JW, Maken S (2020) Facile synthesis of SiO2/CMC/Ag hybrids derived fromwaste biomass (sugarcane bagasse) havingspecial medical application. J Nanosci Nanotechnol 20:6413–6421

    Article  Google Scholar 

  17. Hernandez EM, Allieri MAA, Sadhukhan J, Anell JA (2018) Sugarcane bagasse valorization strategies for bioethanol and energy production. Sugarcane-Technol Res. https://doi.org/10.5772/intechopen.72237

    Article  Google Scholar 

  18. Kim B, Gulati I, Park JW, Shin JS (2012) Pre-treatment of cellulosic waste sawdust into reducing sugars using mercerization and etherification. BioResources 7(4):5152–5166

    Article  Google Scholar 

  19. Kumar H, Gehlaut AK, Gaur A, Park JW, Maken S (2020) Development of zinc-loaded nanoparticle hydrogel made from sugarcane bagasse for special medical application. J Mater Cycles Waste Manag 22:1723–1733

    Article  Google Scholar 

  20. Yasar F, Togrul H, Arslan N (2007) Flow properties of cellulose and carboxymethyl cellulose from orange peel. J Food Eng 81:187–199

    Article  Google Scholar 

  21. Gupta H, Kumar H, Kumar M, Gehlaut AK, Gaur A, Sachan S, Park JW (2020) Synthesis of biodegradable films obtained from rice husk and sugarcane bagasse to be used as food packaging material. Environ Eng Res 25(4):506–514

    Article  Google Scholar 

  22. Pushpamalar V, Langford SJ, Ahmad M, Lim YY (2006) Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohyd Polym 64:312–318

    Article  Google Scholar 

  23. Togrul H, Arslan N (2003) Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behaviour of carboxymethyl cellulose. Carbohyd Polym 54:73–82

    Article  Google Scholar 

  24. Barai BK, Singhal RS, Kulkarni PR (1997) Optimization of a process for preparing carboxymethyl cellulose from water hyacinth (Eichornia crassipes). Carbohyd Polym 32:229–231

    Article  Google Scholar 

  25. He X, Wu S, Fu D, Ni J (2009) Preparation of sodium carboxymethyl cellulose from paper sludge. J Chem Technol Biotechnol 84:427–434

    Article  Google Scholar 

  26. Gaur A, Kumar H (2018) Synthesis and swelling behavior of superabsorbent hydrogels acquired from CMC for efficient drug delivery. Res J Chem Environ 22:19–26

    Google Scholar 

  27. Singh RK, Singh AK (2013) Optimization of reaction conditions for preparing carboxymethyl cellulose from corn cobic agricultural waste. Waste Biomass Valor 4:129–137

    Article  Google Scholar 

  28. Yeasmin MS, Mondal MIH (2015) Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size. Int J Biol Macromol 80:725–731

    Article  Google Scholar 

  29. Rashid MHU, Imran AB (2019) Superabsorbent Hydrogels from carboxymethyl cellulose. Carboxymethyl Cellulose I, ISBN: 978-1-53614-742-1

  30. Hashem M, Sharaf S, Hady MMA, Hebeish A (2013) Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellulose-hydrogel-ZnO-nanocomposites. Carbohyd Polym 95:421–427

    Article  Google Scholar 

  31. Siritientong T, Aramwit P (2015) Characteristics of carboxymethyl cellulose/sericin hydrogels and the influence of molecular weight of carboxymethyl cellulose. Macromol Res 23:861–866

    Article  Google Scholar 

  32. Ganguly S, Das P, Das NC (2020) Characterization tools and techniques of hydrogels. In: Hydrogels based on natural polymers. Elsevier, pp 481–517

  33. Rudzinski WE, Dave AM, Vaishnav UH, Kumbar SG, Kulkarni AR, Aminabhavi TM (2002) Hydrogels as controlled release devices in agriculture. Des Monomers Polym 5:39–65

    Article  Google Scholar 

  34. Malmsten M (2011) Antimicrobial and antiviral hydrogels. Soft Matter 7:8725–8736

    Article  Google Scholar 

  35. Vlierberghe SV, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromol 12:1387–1408

    Article  Google Scholar 

  36. Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HJP (2008) Review on hydrogel-based pH sensors and microsensors. Sensors 8:561–581

    Article  Google Scholar 

  37. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polym 49:1993–2007

    Article  Google Scholar 

  38. Paulino AT, Belfiore LA, Kubota LT, Muniz EC, Tambourgi EB (2011) Efficiency of hydrogels based on natural polysaccharides in the removal of Cd2+ ions from aqueous solutions. Chem Eng J 168:68–76

    Article  Google Scholar 

  39. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100

    Article  Google Scholar 

  40. Lin OH, Kumar RN, Rozman HD, Noor MAM (2005) Grafting of sodium carboxymethyl cellulose (CMC) with glycidyl methacrylate and development of UV curable coatings from CMC-g-GMA induced by cationic photoinitiators. Carbohydr Polym 69:57–69

    Article  Google Scholar 

  41. Rodriguez R, Alvarez-Lorenzo C, Concheiro A (2003) Cationic cellulose hydrogels: kinetics of the cross-linking process and characterization as pH-/ion sensitive drug delivery systems. J Control Release 86:253–265

    Article  Google Scholar 

  42. Kono H, Onishi K, Nakamura T (2013) Characterization and bisphenol A adsorption capacity of cellulose-based hydrogels. Carbohydr Polym 98:784–792

    Article  Google Scholar 

  43. Akar E, Antinis KA, Seki Y (2012) Preparation of pH and ionic-strength responsive biodegradable fumaric acid cross-linked carboxymethyl cellulose. Carbohydr Polym 90:1634–1641

    Article  Google Scholar 

  44. Nerurkar NL, Elliott DM, Mauck RL (2010) Mechanical design criteria for intervertebral disc tissue engineering. J Biomechanics 43:1017–1030

    Article  Google Scholar 

  45. Sannino A, Demitri H, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373

    Article  Google Scholar 

  46. Saha N, Saarai A, Roy N, Kitano T, Saha P (2011) Polymeric biomaterial based hydrogels for biomedical applications. J Biomater Nanobiotechnol 2:85–90

    Article  Google Scholar 

  47. El-Naggar AA (2014) Radiation synthesis of superabsorbent hydrogels based on carboxymethyl cellulose/sodium alginate for absorbent of heavy metal ions from waste water. J Thermoplast Compos Mater 29(1):16–27

    Article  Google Scholar 

  48. Mohan N, Nair PD (2005) Novel porous polysaccharide scaffolds for tissue engineering application. Trends Biomater Artif Organ 18(2):219–224

    Google Scholar 

  49. Ng RW, Chenge YL (2007) Calcium alginate dressing related hypercacalcemia. J Burn Care Res 28:203–204

    Article  Google Scholar 

  50. Patel HA (1993) Process for preparing the alginate containing wound dressing. United States Patent No. 5470576

  51. Hebeish A, Hashem M, Hady MMA, Sharaf S (2013) Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym 92:407–413

    Article  Google Scholar 

  52. Sadeghi M, Hosseinzadeh H (2013) Synthesis and properties of collagen-g-poly (sodium acrylate-co-2-hydroxyethylacrylate) superabsorbent hydrogels. Braz J Chem Eng 30(2):379–389

    Article  Google Scholar 

  53. Pourjavadi A, Barzegar S, Mahdavinia GR (2006) MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohydr Polym 66:386–395

    Article  Google Scholar 

  54. Schillemans JP, Hennink WE, van Nostrum CF (2010) The effect of network charge on the immobilization and release of proteins from chemically cross-linked dextran hydrogels. Eur J Pharm Biopharm 76(3):329–335

    Article  Google Scholar 

  55. Pescosolido L, Schuurman W, Malda J (2011) Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromol 12(5):1831–1838

    Article  Google Scholar 

  56. Abdelmohdy HL (2007) Water sorption behavior of CMC/PAM hydrogels prepared by c-irradiation and release of potassium nitrate as agrochemical. React Funct Polym 67:1094–1102

    Article  Google Scholar 

  57. Kim JH, Lee SB, Kim SJ, Lee YM (2002) Rapid temperature/pH response of porous alginate-g-poly (Nisopropylacrylamide) hydrogels. Polymer 43:7549–7558

    Article  Google Scholar 

  58. Hebeish A, El-Rafie MH, Abdel-Mohdy FA, Abdel-Halim ES, Emam HE (2010) Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr Polym 82:933–941

    Article  Google Scholar 

  59. Biffis A, Orlandi N, Corain B (2003) Microgel-stabilized metal nanoclusters: size control by microgel nanomorphology. Adv Mater 15:1551–1555

    Article  Google Scholar 

  60. Daniel MC, Astrue D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  61. Kiesow A, Morris JE, Radehaus C, Heilmann A (2003) Switching behavior of plasma polymer films containing silver nanoparticles. J Appl Phys 94:6988–6990

    Article  Google Scholar 

  62. Vaseashta A, Dimova-Malinovska D (2005) Nanostructured and nanoscale devices, sensors and detectors. Sci Technol Adv Mater 6:312–318

    Article  Google Scholar 

  63. Xu S, Zhang J, Paquet C, Lin Y, Kumacheva E (2003) From hybrid microgels to photonic crystals. Adv Funct Mater 13:468–472

    Article  Google Scholar 

  64. Xu ZP, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040

    Article  Google Scholar 

  65. Basuny M, Ali IO, Gawad AAE, Bakr MF, Salama TM (2015) A fast green synthesis of Ag nanoparticles in carboxymethyl cellulose (CMC) through UV irradiation technique for antibacterial applications. J Sol-Gel Sci Technol 75:530–540

    Article  Google Scholar 

  66. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  Google Scholar 

  67. Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54(2):177–182

    Article  Google Scholar 

  68. Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E (2003) Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 133(12):4077–4082

    Article  Google Scholar 

  69. Kumar H, Gehlaut AK, Gupta H, Gaur A, Park JW (2020) Development of copper loaded nanoparticles hydrogel made from waste biomass (sugarcane bagasse) for special medical application. Key Eng Mater 847:102–107

    Article  Google Scholar 

  70. Kumar H, Gehlaut AK, Gupta H, Gaur A, Kamsonlian S, Kumar D (2021) Facile synthesis and application of aluminum oxide nanoparticle based biodegradable film. Polym Compos 42:1–12

    Article  Google Scholar 

  71. Anirudhan TS, Parvathy J (2014) Novel semi-IPN based on cross-linked carboxymethyl starch and clay for the in vitro release of theophylline. Int J Biol Macromol 67:238–245

    Article  Google Scholar 

  72. Pongjanyakul T, Rongthong T (2010) Enhanced entrapment efficiency and modulated drug release of alginate beads loaded with drug–clay intercalated complexes as microreservoirs. Carbohydr Polym 81(2):409–419

    Article  Google Scholar 

  73. Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethyl cellulose/CuOnanocomposite hydrogels. Int J Biol Macromol 73:109–114

    Article  Google Scholar 

  74. Tomsic B, Simoncic B, Orel B, Zerjav M, Schroers H, Simoncic A, Samardzija Z (2009) Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydr Polym 75:618–626

    Article  Google Scholar 

  75. Lustosa AKMF, Oliveira ACdeJ, Quelemes PV, Placido A, da Silva FV, Oliveira IS, de Almeida MP, Amorim AdasGN, Delerue-Matos C, Eaton P (2017) In Situ synthesis of silver nanoparticles in a hydrogel of carboxymethyl cellulose with phthalated-cashew gum as a promising antibacterial and healing agent. Int J Mol Sci 18(11):2399

    Article  Google Scholar 

  76. Vimala K, Mohan YM, Sivudu KS, Varaprasad K, Ravindra S, Reddy NN, Padma Y, Sreedhar B, MohanaRaju K (2010) Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Colloids Surf B 76:248–258

    Article  Google Scholar 

  77. Pedroza-Toscano MA, Lopez-Cuenca S, Rabelero-Velasco M, Moreno-Medrano ED, Mendizabal-Ruiz AP, Salazar-Pena R (2017) Silver nanoparticles obtained by semicontinuous chemical reduction using carboxymethyl cellulose as a stabilizing agent and its antibacterial capacity. J Nanomater. https://doi.org/10.1155/2017/1390180

    Article  Google Scholar 

  78. Abdel-Halim ES, Alanazi HH, Al-Deyab SS (2015) Utilization of hydroxypropyl carboxymethyl cellulose in synthesis of silver nanoparticles. Int J Biol Macromol 75:467–473

    Article  Google Scholar 

  79. Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 315:389–395

    Article  Google Scholar 

  80. Bhattacharya SS, Shukla S, Banerjee S, Chowdhury P, Chakraborty P, Ghosh A (2013) Tailored IPN hydrogel bead of sodium carboxymethyl cellulose and sodium carboxymethyl xanthan gum for controlled delivery of diclofenac sodium. Polym Plast Technol 52:795–805

    Article  Google Scholar 

  81. Wang S, Zhang Q, Tan B, Liu L, Shi L (2011) pH-sensitive poly (vinylalcohol)/sodium carboxymethyl cellulose hydrogel beads for drug delivery. J Macromol Sci B 50:2307–2317

    Article  Google Scholar 

  82. Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Ramam K, Raju KM (2013) Iota-Carrageenan-based biodegradable Ag0nanocomposite hydrogels for the inactivation of bacteria. Carbohydr Polym 95:188–194

    Article  Google Scholar 

  83. Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Ramam K, Raju KM (2013) Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria. Carbohydr Polym 92:2193–2200

    Article  Google Scholar 

  84. Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 98(3):1001–1009

    Article  Google Scholar 

  85. Li B, Li Y, Wu Y, Zhao Y (2014) Synthesis of water-soluble Cu/PAA composite flowers and their antibacterial activities. Mater Sci Eng C 35:205–211

    Article  Google Scholar 

  86. Tokarek K, Hueso JL, Kustrowski P, Stochel G, Kyzioł A (2013) Green synthesis of chitosan-stabilized copper nanoparticles. Eur J Inorg Chem 28:4940–4947

    Article  Google Scholar 

  87. Delgado K, Quijada R, Palma R, Palza H (2011) Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett Appl Microbial 53:50–54

    Article  Google Scholar 

  88. Llorens A, Lloret E, Picouet P, Fernandez A (2012) Study of the antifungal potential of novel cellulose/copper composites as absorbent materials for fruit juices. Int J Food Microbiol 158(2):113–119

    Article  Google Scholar 

  89. Ganguly S, Maity T, Mondal S, Das P, Das NC (2017) Starch functionalized biodegradable semi-IPN as a pH-tunable controlled release platform for memantine. Int J Biol Macromol 95:185–198

    Article  Google Scholar 

  90. Kanmaz N, Saloglu D, Hizal J (2019) Humic acid embedded chitosan/poly (vinyl alcohol) pH-sensitive hydrogel: synthesis, characterization, swelling kinetic and diffusion coefficient. Chem Eng Commun 206(9):1168–1180

    Article  Google Scholar 

  91. Ganguly S, Mondal S, Das P, Bhawal P, Maity PP, Ghosh S, Dhara S, Das NC (2018) Design of psyllium-g-poly (acrylic acid-co-sodium acrylate)/cloisite 10A semi-IPN nanocomposite hydrogel and its mechanical, rheological and controlled drug release behaviour. Int J Biol Macromol 111:983–998

    Article  Google Scholar 

  92. Kanmani P, Rhim JW (2014) Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohyd Polym 106:190–199

    Article  Google Scholar 

  93. Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng 86:521–522

    Article  Google Scholar 

  94. Das D, Nath BC, Phukon P, Kalita A, Dolui SK (2013) Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf B 111:556–560

    Article  Google Scholar 

  95. Shafei AE, Abou-Okeil A (2011) ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric. Carbohydr Polym 83:920–925

    Article  Google Scholar 

  96. Zare-Akbari Z, Farhadnejad H, Furughi-Nia B, Abedin S, Yadollahi M, Khorsand-Ghayeni M (2016) PH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier. Int J Biol Macromol 93:1317–1327

    Article  Google Scholar 

  97. Ebrahimi Y, Peighambardoust SJ, Peighambardoust SH, Karkaj SZ (2019) Development of antibacterial carboxymethyl cellulose-based nanobiocomposite films containing various metallic nanoparticles for food packaging applications. J Food Sci 84:2537–2548

    Article  Google Scholar 

  98. Sarojini S, Indumathi MP, Rajarajeswari GR (2019) Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications. Int J Biol Macromol 124:163–174

    Article  Google Scholar 

  99. Shankar S, Wang LF, Rhim JW (2016) Preparations and characterization of alginate/silver composite films: effect of types of silver particles. Carbohydr Polym 146:208–216

    Article  Google Scholar 

  100. Huang Y, Mei L, Chen X, Wang Q (2018) Recent developments in food packaging based on nanomaterials. Nanomaterials 8(10):830

    Article  Google Scholar 

  101. Chavoshizadeh S, Pirsa S, Mohtarami F (2020) Conducting/smart color film based on wheat gluten/chlorophyll/ polypyrrole nanocomposite. Food Packag Shelf Life 24:100501

    Article  Google Scholar 

  102. Mohammadi B, Pirsa S, Alizadeh M (2019) Preparing chitosan–polyaniline nanocomposite film and examining its mechanical, electrical, and antimicrobial properties. Polym Polym Compos 27(8):507–517

    Google Scholar 

  103. Pirouzifard M, Yorghanlu RA, Pirsa S (2020) Production of active film based on potato starch containing Zedo gum and essential oil of Salvia officinalis and study of physical, mechanical, and antioxidant properties. J Thermoplast Compos Mater 33(7):915–937

    Article  Google Scholar 

  104. Pirsa S (2020) Biodegradable film based on pectin/Nano-Clay/methylene blue: structural and physical properties and sensing ability for measurement of vitamin C. Int J Biol Macromol 163:666–675

    Article  Google Scholar 

  105. Pirsa S, Sani IK, Pirouzifard MK, Erfani A (2020) Smart film based on chitosan/Melissa officinalis essences/ pomegranate peel extract to detect cream cheeses spoilage. Food Addit Contam Part A 37(4):634–648

    Article  Google Scholar 

  106. Asadi S, Pirsa S (2020) Production of biodegradable film based on polylactic acid, modifed with lycopene pigment and TiO2 and studying its physicochemical properties. J Polymer Environ 28:433–444

    Article  Google Scholar 

  107. Asdagh A, Pirsa S (2020) Bacterial and oxidative control of local butter with smart/active film based on pectin/nanoclay/Carum copticum essential oils/β-carotene. Int J Biol Macromol 165:156–168

    Article  Google Scholar 

  108. Ghasemi S, Bari MR, Pirsa S, Amiri S (2020) Use of bacterial cellulose film modified by polypyrrole/TiO2-Ag nanocomposite for detecting and measuring the growth of pathogenic bacteria. Carbohydr Polym 232:115801

    Article  Google Scholar 

  109. Pirsa S, Mohtarami F, Kalantari S (2020) Preparation of biodegradable composite starch/tragacanth gum/Nanoclay film and study of its physicochemical and mechanical properties. Chem Rev Lett 3(3):98–103

    Google Scholar 

  110. Rezaei M, Pirsa S, Chavoshizadeh S (2020) Photocatalytic/antimicrobial active film based on wheat gluten/ZnO nanoparticles. J Inorg Organomet Polym Mater 30:2654–2665

    Article  Google Scholar 

  111. Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnOnanocomposite hydrogels. Int J Biol Macromol 74:136–141

    Article  Google Scholar 

  112. Ansari MA, Khan HM, Khan AA, Pal R, Cameotra SS (2013) Antibacterial potential of Al2O3 nanoparticles against multidrug resistance strains of Staphylococcus aureus isolated from skin exudates. J Nanopart Res 15:1970

    Article  Google Scholar 

  113. Jwad KH, Saleh TH, Alhamza AB (2019) Preparation of aluminum oxide nanoparticles by laser ablation and a study of their applications as antibacterial and wounds healing agent. Nano Biomed Eng 11(3):313–319

    Article  Google Scholar 

  114. Mohammadi H, Kamkar A, Misaghi A (2018) Nanocomposite films based on CMC, okra mucilage and ZnO nanoparticles: Physico mechanical and antibacterial properties. Carbohydr Polym 181:351–357

    Article  Google Scholar 

  115. Franco AP, Recio MAL, Szpoganicz B, Delgado AL, Felcman J, Merce ALR (2007) Complexes of carboxymethylcellulose in water. Part 2. Co2+ and Al3+ remediation studies of wastewaters with Co2+, Al3+, Cu2+, VO2+ and Mo6+. Hydrometallurgy 87:178–189

    Article  Google Scholar 

  116. Shahabi-Ghahfarrokhi I, Khodaiyana F, Mousavi M, Yousefic H (2015) Preparation of UV-protective kefiran/nano-ZnO nanocomposites: Physical and mechanical properties. Int J Biol Macromol 72:41–46

    Article  Google Scholar 

  117. Jebel FS, Almasi H (2016) Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydr Polym 149:8–19

    Article  Google Scholar 

  118. Salarbashi D, Mortazavi SA, Noghabi MS, Bazzaz BSF, Sedaghat N, Ramezan M, Shahabi-Ghahfarrokhi I (2016) Development of new active packaging film made from a soluble soybean polysaccharide incorporating ZnO nanoparticles. Carbohydr Polym 140:220–227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 93 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H. A review on facile synthesis of nanoparticles made from biomass wastes. Nanotechnol. Environ. Eng. 7, 783–796 (2022). https://doi.org/10.1007/s41204-022-00259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-022-00259-9

Keywords

Navigation