Skip to main content

Advertisement

Log in

Reduction of Organic Load and Biodegradation of Palm Oil Mill Effluent by Aerobic Indigenous Mixed Microbial Consortium Isolated from Palm Oil Mill Effluent (POME)

  • Original Paper
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

This study was designed to determine the potential of indigenous mixed microbial consortium isolated from palm oil mill effluent (POME) in reducing organic load and biodegradation of POME. Isolation and identification of indigenous microorganisms was subjected to standard microbiological methods and sequencing of the 16S rRNA and 18S rRNA genes. Sequencing of the 16S rRNA and 18S rRNA genes of the microbial strains suggests that they were identified as Micrococcus luteus101PB, Stenotrophomonas maltophilia102PB, Bacillus cereus103PB, Providencia vermicola104PB, Klebsiella pneumoniae105PB, Bacillus subtilis106PB, Aspergillus fumigatus107PF, Aspergillus nomius108PF, Aspergillus niger109PF, and Meyerozyma guilliermondii110PF. Results revealed that total percent reduction efficiency by the aerobic mixed microbial consortium for all bacteria–fungi combination (ABFC) gave a biochemical oxygen demand (BOD) reduction efficiency of about 90.23%, chemical oxygen demand (COD) 91.06%, and total suspended solids (TSS) 92.23% and bacteria–fungi stepwise (BFSW) recorded BOD reduction efficiency of 85.28%, COD 84.45%, and TSS 86.18% in 1000 mL of POME. The HPLC chromatogram results revealed increase in glucose level due to breakdown of cellulose which represents the cellulosic materials in POME by mixed microbial consortium signifying biodegradation of cellulose as a clean-up process for the tested POME sample. Therefore, the indigenous microbial strains are promising organisms for industrial applications. These microbes have direct applications in industrial process such as bioremediation and biodegradation of wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Plate 1
Plate 2
Plate 3
Plate 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abass AO, Jameel TA, Muyibi AS, Abdul Karim IM, Alam Z (2012) Investigation of the viability of selected microorganisms on the biodegradation of palm oil mill effluents (POME). Int J Chem Environ Engineer 3(3):182–186

    Google Scholar 

  2. AbdulKarim MI, Daud NA, Alam MDZ (2011) Treatment of palm oil mill effluent using microorganisms. In: M.D.Z, Alam, A.T, Jameel and A, Amid, (eds). Current research and development in biotechnology engineering at International Islamic University Malaysia (IIUM) Vol. III. IIUM Press, Kuala Lumpur, p. 269-275. ISBN 9789674181444

  3. Agamuthu P, Tan EL, Shaifal AA (1986) Effect of aeration and soil inoculum on the composition of palm oil effluent (POME). Agri Wast 15(2):121–132. https://doi.org/10.1016/0141-4607(86)90043-0

    Article  CAS  Google Scholar 

  4. Agustin MB, Sengpracha WP, Phutdhawong W (2008) Electrocoagulation of palm oil mill effluent. Int J Environ Res Public Health 5(3):177–180. https://doi.org/10.3390/ijerph5030177

    Article  CAS  Google Scholar 

  5. Ahmad AL, Ismail S, Bhatia S (2003) Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination 157(1-3):87–95. https://doi.org/10.1016/S0011-9164(03)00387-4

    Article  CAS  Google Scholar 

  6. Ahmad AL, Sumathi S, Hameed BH (2005) Residual oil and suspended solid removal using natural adsorbents chitosan, bentonite and activated carbon: a comparative study. Chem Eng J 108(1–2):179–185. https://doi.org/10.1016/j.cej.2005.01.016

    Article  CAS  Google Scholar 

  7. Alade AO, Jameel AT, Muyubi SA, Abdul Karim MI, Alam MDZ (2011) Removal of oil and grease as emerging pollutants of concern (EPC) in wastewater stream. IIUM Engineer J 12(4):161–169

    Google Scholar 

  8. Alam MZ, Rashid SS, Karim MIA, Salleh MH (2009) Management of palm oil mill effluent through production of cellulases by filamentous fungi. World J Microb Biotechnol 25:2219–2226

    Article  CAS  Google Scholar 

  9. Al-Gheethi AAS (2015) Recycling of sewage sludge as production medium for cellulase by a Bacillus megaterium strain. Int J Recycl Org Waste Agricult 4(2):105–119. https://doi.org/10.1007/s40093-015-0090-6

    Article  Google Scholar 

  10. Al-Gheethi AAS, Efaq AN, Mohamed RMSR, Bala JD, Amir Hashim MK (2016) Cellulase: Production, Applications and Health Benefits. In: Stevenson M (ed) Microbial cellulase: production and application in enzymatic treatment of biosolids. Biochemistry Research Trends. Nova Science Publishers Inc, Hauppauge, New York ISBN: 978-1-63485-788-8; ISBN: 978-1-63485-802-1 pp. 45–62

    Google Scholar 

  11. Allcock ER, Woods DR (1981) Carboxymethyl cellulase and cellobiase production by Clostridium acetobutylicum in an industrial fermentation medium. Appl Environ Microbiol 41(2):539–541

    CAS  Google Scholar 

  12. APHA (2005) Standard methods for the examination of water and wastewater, in, 21st edn, American Public Health Association (APHA), Washington, DC

  13. Bala JD, Lalung J, Ismail N, (2014a) Biodegradation potential and removal of oil and grease by bacterial isolated from palm oil mill effluent (POME). Proceedings of the International Conference on Beneficial Microbes ICOBM 2014: Microbes for the Benefits of Mankind, May 27–29, 2014, PARKROYAL Penang Resort, Penang, Malaysia. Editors: Liong M.T, Ahmad, R, Hena, S, Wan-Abdullah, W.N, Lee, C.K, Serri, N.A, Tajaruddin, H.A.B, Ong, J.S, Amy-Lau. S.Y. School of Industrial Technology, Universiti Sains Malaysia 2014. Pages 138–144. ISBN 978-967-394-186-5

  14. Bala JD, Lalung J, Ismail N (2014b) Biodegradation of palm oil mill effluent (POME) by bacterial. Int J Sci Res Publ 4(3):502–511

    Google Scholar 

  15. Bala JD, Lalung J, Ismail N (2014c) Palm oil mill effluent (POME) treatment “microbial communities in an anaerobic digester”: a review. Int J Sci Res Publ 4(6):2250–3153

    Google Scholar 

  16. Bala JD, Lalung J, Ismail N (2015a) Studies on the reduction of organic load from palm oil mill effluent (POME) by bacterial strains. Int J Recycl Org Waste Agric 4(1):1–10. https://doi.org/10.1007/s40093-014-0079-6

    Article  Google Scholar 

  17. Bala JD, Lalung J, Al-Gheethi AAS, Ismail N (2015b) Reduction of oil and grease by fungi isolated from palm oil mill effluent (POME). Proceedings of the 4th ICERT 2015: International Conference on Environmental Research and Technology: Exploring the Frontiers in Environmental Science and Technology Research, 27–29 May 2015, Parkroyal Hotel Penang, Malaysia. Editors: Tow, TT, Yusup, Y, Fadhlullah, W. School of Industrial Technology, Universiti Sains Malaysia 2015. Pages 79–91. ISBN 978-967-394-211-4

  18. Bala JD (2016) Aerobic treatment and biodegradation of palm oil mill effluent by indigenous microorganisms. PhD Thesis, Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), 11800 Pulau, Pinang, Malaysia

  19. Barr BK, Hsieh Y-L, Ganem B, Wilson DB (1996) Identification of two functionally different classes of exocellulases. Biochemist 35(2):586–592. https://doi.org/10.1021/bi9520388

    Article  CAS  Google Scholar 

  20. Benka-coker MO, Ekundayo JA (1997) Applicability of evaluating the ability of microbes isolated from an oil spill site to degrade oil. Environ Monit Ass 45:259–272

    Article  CAS  Google Scholar 

  21. Beguin P (1990) Molecular biology of cellulose degradation. Annu Rev Microbiol 44(1):219–248. https://doi.org/10.1146/annurev.mi.44.100190.001251

    Article  CAS  Google Scholar 

  22. Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13(1):25–58. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x

    Article  Google Scholar 

  23. Bek-Nielsen C, Singh G, Toh TS (1999) Bioremediation of palm oil mill effluent. In: In: Proceedings of the Porim International Palm Oil Congress, 16th February 1999. Malaysia, Kuala Lumpur

    Google Scholar 

  24. Boekema BKHL, Beselin A, Breuer M, Hauer B, Koster M, Rosenau F, Jaeger KE, Tommassen J (2007) Hexadecane and Tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms. Appl Environ Microbiol 73(12):3838–3844. https://doi.org/10.1128/AEM.00097-07

    Article  CAS  Google Scholar 

  25. Cao SG, Yong H, Ma L, Guo SC (1996) Enzymatic properties by the immobilization method. Appl Biochem Biotechnol 59(1):7–14. https://doi.org/10.1007/BF02787853

    Article  CAS  Google Scholar 

  26. Cheng J, Zhu X, Ni J, Borthwick (2010) A palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters. Bioresour Technol 101(8):2729–2734. https://doi.org/10.1016/j.biortech.2009.12.017

    Article  CAS  Google Scholar 

  27. Chhatre S, Purohit HJ, Shanker R, Khanna P (1996) Bacterial consortia for crude oil spill remediation. Water Sci Technol 34:187–193

    Article  CAS  Google Scholar 

  28. Chigusa S, Hasegawa T, Yamamota N, Watanabe Y (1996) Treatment of waste water from oil manufacture plant by yeasts. Water Sci Technol 34:51–58

    Article  CAS  Google Scholar 

  29. Chin KK, Lee SW, Mohammad HH (1996) A study of palm oil mill effluent treatment using a pond system. Water Sci Technol 34:119–123

    Article  CAS  Google Scholar 

  30. De Felice B, Pontecorvo G, Carfagna M (1997) Degradation of waste waters from olive oil mills by Yarrowia lipolytica ATCC 20255 and Pseudomonas putida. Acta Biotechnol 17(3):231–239. https://doi.org/10.1002/abio.370170306

    Article  Google Scholar 

  31. Deobald LA, Crawford DL (1997) Lignocellulose biodegradation. In: Hurst CJ, Knudsen GR, Stetzenbach LD, Walter MV (eds) Manual of Environmental Microbiology ASM Press. USA pp, Washington DC, pp 730–737

    Google Scholar 

  32. Dhouib A, Ellouz M, Aloui F, Sayadi S (2006) Effect of bioaugmentation of activated sludge with white rot fungi on olive mill wastewater detoxification. Lett Appl Microbiol 42(4):405–411. https://doi.org/10.1111/j.1472-765X.2006.01858.x

    Article  CAS  Google Scholar 

  33. Din MF, Ujang Z, Muhd-Yunus S, Van-Loosdrecht MCM (2006) Storage of polyhydroxyalkanoates (PHA) in fed-batch mixed culture using palm oil mill effluent (POME). In: 4th Seminar on Water Management (jsps-vcc), Johor, pp 119–127

    Google Scholar 

  34. Dipasquale L, Romano I, Picariello G, Calandrelli V, Lama L (2014) Characterization of a native cellulase activity from an anaerobic thermophilic hydrogen-producing bacterium Thermosipho sp. strain 3. Ann Microbiol 64(4):1493–1503. https://doi.org/10.1007/s13213-013-0792-9

    Article  CAS  Google Scholar 

  35. El-Masry MH, El- Bestaway E, El-Adi NI (2004) Bioremediation of vegetable oil and grease from polluted wastewater using a sand biofilm system. World J Microbiol Biotechnol 20(6):551–557. https://doi.org/10.1023/B:WIBI.0000043162.17813.17

    Article  CAS  Google Scholar 

  36. Environmental Management Guideline (1997) Palm oil industry. German Technical Cooperation. Thailand, Bangkok, p 5

    Google Scholar 

  37. Environmental Quality (Prescribed Premises) (crude palm oil) Regulation 1977 (2014)

  38. Francis AR, Masilamai D (2012) Removal of zinc (II) by non-living biomass of Agaricus Bisporus. Res J Recent Sci 1(9):13–17

    Google Scholar 

  39. Glazer AN, Nikaido H (1995) Microbial biotechnology: fundamentals of applied microbiology. USA: University of California, Berkley WH Fremanand Company. ISBN0-71672-608-4

  40. Goyal AK, Eveleigh DE (1996) Cloning, sequencing and analysis of the ggh-A gene encoding a 1,4-beta-D-glucan glucohydrolase from Microbispora bispora. Gene 172(1):93–99. https://doi.org/10.1016/0378-1119(96)00076-5

    Article  CAS  Google Scholar 

  41. Hamme JD, Odumeru JA, Ward OP (2000) Community dynamics of a mixed-bacterial culture growing on petroleum hydrocarbons in batch culture. Can J Microbiol 46(5):441–450. https://doi.org/10.1139/w00-013

    Article  Google Scholar 

  42. Hazaimeh M, Mutalib SA, Abdullah PS, Kee WK, Surif S (2014) Enhanced crude oil hydrocarbon degradation by self-immobilized bacterial consortium culture on sawdust and oil palm empty fruit bunch. Ann Microbiol. 64(4):1769–1777. https://doi.org/10.1007/s13213-014-0821-3

    Article  CAS  Google Scholar 

  43. Hernández D, Riaño B, Coca M, García-González MC (2013) Treatment of agro-industrial wastewater using microalgae–bacteria consortium combined with anaerobic digestion of the produced biomass. Bioresour Technol 135(2013):598–603. https://doi.org/10.1016/j.biortech.2012.09.029

    Article  CAS  Google Scholar 

  44. Hii KL, Yeap SP, Mashitah MD (2012) Cellulase production from palm oil mill effluent in Malaysia: economical and technical perspectives. Eng Life Sci 12(1):7–28. https://doi.org/10.1002/elsc.201000228

    Article  CAS  Google Scholar 

  45. Ho CC, Tan YK, Wang CW (1984) The distribution of chemical constituents between the soluble and the particulate fractions of palm oil mill effluent and its significance on its utilisation/treatment. Agric Wastes 11(1):61–71. https://doi.org/10.1016/0141-4607(84)90055-6

    Article  CAS  Google Scholar 

  46. Ibrahim AH, Dahlan I, Adlan MN, Dasti AF (2012) Comparative study on characterization of malaysian palm oil mill effluent. Res J Chem Sci 2(12):1–5

    CAS  Google Scholar 

  47. Iwara AI, Ewa EE, Ogundele FO, Adeyemi JA (2011) Ameliorating effects of palm oil mill effluent on the physical and chemical properties of soil in Ugep, Cross River state, South-Southern Nigeria. Int J App Sci Technol 1(5):106–112

    Google Scholar 

  48. Jameel AT, Muyibi SA, Olanrewaju AA (2011) Comparative study of bioreactors used for palm oil mill effluent treatment based on chemical oxygen removal efficiencies In: M.D.Z, Alam, A.T, Jameel and A, Amid, (eds). Current research and development in biotechnology engineering at International Islamic University Malaysia (IIUM) Vol. III. IIUM Press, Kuala Lumpur, p.277-284. ISBN 9789674181444

  49. Jameel AT, Olanrewaju AA (2011) Aerobic biodegradation of oil and grease in palm oil mill effluent using consortium of microorganisms In: M.D.Z, Alam, A.T, Jameel and A, Amid, (eds). Current research and development in biotechnology engineering at International Islamic University Malaysia (IIUM) Vol. III. IIUM Press, Kuala Lumpur, pp. 43-51. ISBN 9789674181444

  50. Kissi M, Mountadar M, Assobhei O, Gargiulo E, Palmieri G, Giardina P, Sannia G (2001) Roles of two white-rot basidiomycete fungi in decolorization and detoxification of olive mill wastewater. Appl Microbiol Biotechnol 57(1-2):221–226

    Article  CAS  Google Scholar 

  51. Lam MK, Lee KT (2011) Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection. Biotechnol Adv 29(1):124–141. https://doi.org/10.1016/j.biotechadv.2010.10.001

    Article  CAS  Google Scholar 

  52. Li H, Ni J (2011) Treatment of wastewater from Dioscorea zingiberensis tubers used for producing steroid hormones in a microbial fuel cell. Bioresour Technol 102(3):2731–2735. https://doi.org/10.1016/j.biortech.2010.11.030

    Article  CAS  Google Scholar 

  53. Lynd LR, Weimer PJ, Vanzyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577. https://doi.org/10.1128/MMBR.66.3.506-577.2002

    Article  CAS  Google Scholar 

  54. Maygaonkar PA, Wagh PM, Permeswaran U (2012) Biodegradation of distillery effluent by fungi. Biosci Dis 3(2):251–258

    Google Scholar 

  55. McHugh S, O’Reilly C, Mahony T, Colleran E, O’Flaherty V (2003) Anaerobic granular sludge bioreactor technology. Rev Environ Sci Biotechnol 2(2-4):225–245. https://doi.org/10.1023/B:RESB.0000040465.45300.97

    Article  CAS  Google Scholar 

  56. Mohammed RR, Ketabachi MR, McKay G (2014) Combined magnetic field and adsorption process for treatment of biologically treated palm oil mill effluent (POME). Chem Eng J 243:31–42. https://doi.org/10.1016/j.cej.2013.12.084

    Article  CAS  Google Scholar 

  57. Najafpour GD, Zinatizadeh AAL, Mohamed AR, Isa-Hasnain M, Nasrollahzadeh H (2006) High-rate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor. Process Biochem 41(2):370–379. https://doi.org/10.1016/j.procbio.2005.06.031

    Article  CAS  Google Scholar 

  58. Ohimain EI, Olukole CD, Izah SC, Eke RA, Okonkwo AC (2012) Microbiology of palm oil mill effluents. J Microbiol Biotech Res 2(6):852–857

    CAS  Google Scholar 

  59. Ohimain EI, Izah SC, Jenakumo N (2013) Physicochemical and microbial screening of palm oil mill effluents for amylase production. Greener J Biol Sci 3(8):307–318

    Article  Google Scholar 

  60. Oswal N, Sarma PM, Zinjarde SS, Pant A (2002) Palm oil mill effluent treatment by a tropical marine yeast. Bioresour Technol 85(1):35–37. https://doi.org/10.1016/S0960-8524(02)00063-9

    Article  CAS  Google Scholar 

  61. Piro P, Carbone M, Tomei G (2011) Assessing settleability of dry and wet weather flows in an urban area serviced by combined sewer. Water Air Soil Pollut 214(1–4):107–117. https://doi.org/10.1007/s11270-010-0408-y

    Article  CAS  Google Scholar 

  62. Poh PE, Chong MF (2009) Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment. Bioresour Technol 100(1):1–9. https://doi.org/10.1016/j.biortech.2008.06.022

    Article  CAS  Google Scholar 

  63. Qingwei L, Mancl KM, Tuovinen OH (1998) Effect of inoculation on the biodegradation of butterfat-detergent mixtures in fixed-film sand columns. Bioresour Technol 64:27–32

    Article  Google Scholar 

  64. Rahman KSM, Rahman JT, Lakshmanaperumalsamy P, Banat LM (2002) Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour Technol 85(3):257–261. https://doi.org/10.1016/S0960-8524(02)00119-0

    Article  CAS  Google Scholar 

  65. Rashid SS, Alam MZ, Ismail M, Karim M, Salleh MH (2009) Management of palm oil mill effluent through production of cellulases by filamentous fungi. World J Microbiol Biotechn 25(12):2219–2226. https://doi.org/10.1007/s11274-009-0129-9

    Article  CAS  Google Scholar 

  66. Ray, R.C., 2011. Solid-state fermentation for production of microbial cellulase: an overview. In: Golan AE (ed) Cellulase: types and action, mechanism, and uses. Nova Science Publishers Inc, New York

  67. Sathishkumar M, Binupriya AR, Baik SH, Yun SE (2008) Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean 36(1):92–96

    CAS  Google Scholar 

  68. Sethupathi S (2004) Removal of residue oil from palm oil mill effluent (POME) using chitosan .Master Thesis, School of Chemical Engineering, USM, Malaysia

  69. Shi J (2007) Microbial pretreatment of cotton stalks by Phanerochaete chrysosporium for bioethanol production. Biological and Agricultural Engineering, Raliegh, North Carolina

    Google Scholar 

  70. Sinnappa S (1978) Treatment studies of palm oil mill wastes water pollution. University Press Bangkok, Thailand, pp 21–25

    Google Scholar 

  71. Singh R, Ibrahim MH, Esa N, Iliyana M (2010) Composting of waste from palm oil mill: a sustainable waste management practice. Rev Environ Sci Biotechnol 9(4):331–344. https://doi.org/10.1007/s11157-010-9199-2

    Article  CAS  Google Scholar 

  72. Soleimaninanadegani M, Manshad S (2014) Enhancement of biodegradation of palm oil mill effluents by local isolated microorganisms. Int Scholarly Res Notices 2014:1–8. https://doi.org/10.1155/2014/727049

    Article  Google Scholar 

  73. Sugiura K, Ishihara M, Shimauchi T, Harayama S (1997) Physicochemical properties and biodegradability of crude oil. Environ Sci Technol 31(1):45–51. https://doi.org/10.1021/es950961r

    Article  CAS  Google Scholar 

  74. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  CAS  Google Scholar 

  75. Takemoto H, Hase S, Ikenaka T (1985) Microquantitative analysis of neutral and amino sugars as fluorescent pyridylamino derivatives by high-performance liquid chromatography. Anal Biochem 145(2):245–250. https://doi.org/10.1016/0003-2697(85)90357-4

    Article  CAS  Google Scholar 

  76. Tomme P, Warren RA, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81. https://doi.org/10.1016/S0065-2911(08)60143-5

    Article  CAS  Google Scholar 

  77. Vijayaraghavan K, Ahmad D, Abdul-Aziz ME (2007) Aerobic treatment of palm oil mill effluent. J Environ Manag 82(1):24–31. https://doi.org/10.1016/j.jenvman.2005.11.016

    Article  CAS  Google Scholar 

  78. Wanna C, Pompan W (2007) Effect of temperature on the anaerobic digestion of palm oil mill effluent. Elec. J Biotechnol 10(3):376–385

    Google Scholar 

  79. Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr Opinion Microbiol 14:1–5

    Article  CAS  Google Scholar 

  80. Wong KM, Nor AA, Suraini A, Vikineswary S, Mohd AH (2008) Enzymatic hydrolysis of palm oil mill effluent solid using mixed cellulases from locally isolated fungi. Res J Microbiol 3(6):474–481

    Article  Google Scholar 

  81. Wu TY, Mohammad AW, Md-Jahim J, Anuar N (2007) Palm oil mill effluent (POME) treatment and bioresources recovery using ultrafiltration membrane: effect of pressure on membrane fouling. Biochem Eng J 35(3):309–317. https://doi.org/10.1016/j.bej.2007.01.029

    Article  CAS  Google Scholar 

  82. Wu TY, Mohammad AW, Jahim JM, Anuar N (2010) Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. J Environ Manag 91(7):1467–1490. https://doi.org/10.1016/j.jenvman.2010.02.008

    Article  CAS  Google Scholar 

  83. Yacob S, Hassan MA, Shirai Y, Wakisaka M, Subash S (2005) Baseline study of methane emission from open digesting tanks of palm oil mill effluent treatment. Chemosphere 59(11):1575–1581. https://doi.org/10.1016/j.chemosphere.2004.11.040

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank Universiti Sains Malaysia for the financial support under Research University (RUI) Grant No. 1001/PTEKIND/814147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Bala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala, J.D., Lalung, J., Al-Gheethi, A.A.S. et al. Reduction of Organic Load and Biodegradation of Palm Oil Mill Effluent by Aerobic Indigenous Mixed Microbial Consortium Isolated from Palm Oil Mill Effluent (POME). Water Conserv Sci Eng 3, 139–156 (2018). https://doi.org/10.1007/s41101-018-0043-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41101-018-0043-9

Keywords

Navigation