Skip to main content
Log in

The Rise of Near-Infrared Emitters: Organic Dyes, Porphyrinoids, and Transition Metal Complexes

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

In recent years, the interest in near-infrared (NIR) emitting molecules and materials has increased significantly, thanks to the expansion of the potential technological applications of NIR luminescence in several areas such as bioimaging, sensors, telecommunications, and night-vision displays. This progress has been facilitated by the development of new synthetic routes for the targeted functionalization and expansion of established molecular frameworks and by the availability of simpler and cheaper NIR detectors. Herein, we present recent developments on three major classes of systems—i.e., organic dyes, porphyrinoids, and transition metal complexes—exhibiting the maximum of the emission band at λ > 700 nm. In particular, we focus on the design strategies that may increase the luminescence efficiency, while pushing the emission band more deeply in the NIR region. This overview suggests that further progress can be achieved in the near future, with enhanced availability of more robust, stronger, and cheaper NIR luminophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Ronda CR (ed) (2008) Luminescence—from theory to applications. Wiley, Weinheim

    Google Scholar 

  2. Armaroli N, Balzani V (2011) Energy for a sustainable world. From the oil age to a sun powered future, Chap. 9. Wiley, Weinheim

    Google Scholar 

  3. Kitai A (ed) (2008) Luminescent materials and applications, Wiley series in materials for electronic and optoelectronic applications. Wiley, Chichester

    Google Scholar 

  4. Mason WT (ed) (1999) Fluorescent and luminescent probes for biological activity: a practical guide to technology for quantitative real-time analysis, biological techniques. Academic Press, San Diego

    Google Scholar 

  5. Mirasoli M, Guardigli M, Michelini E, Roda A (2014) J Pharm Biomed Anal 87:36–52

    Article  CAS  Google Scholar 

  6. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  7. Englman R, Jortner J (1970) Mol Phys 18:145–164

    Article  CAS  Google Scholar 

  8. Guo ZQ, Park S, Yoon J, Shin I (2014) Chem Soc Rev 43:16–29

    Article  Google Scholar 

  9. Xiang HF, Cheng JH, Ma XF, Zhou XG, Chruma JJ (2013) Chem Soc Rev 42:6128–6185

    Article  CAS  Google Scholar 

  10. Yuan L, Lin W, Zheng K, He L, Huang W (2013) Chem Soc Rev 42:622–661

    Article  CAS  Google Scholar 

  11. Bünzli J-CG, Eliseeva SV (2010) J Rare Earth 28:824–842

    Article  CAS  Google Scholar 

  12. Jiao C, Wu J (2012) Synlett 171–184

  13. Avlasevich Y, Li C, Müllen K (2010) J Mater Chem 20:3814–3826

    Article  CAS  Google Scholar 

  14. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Science 298:2361–2366

    Article  CAS  Google Scholar 

  15. Piao YM, Meany B, Powell LR, Valley N, Kwon H, Schatz GC, Wang YH (2013) Nat Chem 5:840–845

    Article  CAS  Google Scholar 

  16. Wang R, Zhang F (2014) J Mater Chem B 2:2422–2443

    Article  CAS  Google Scholar 

  17. Locritani M, Yu YX, Bergamini G, Baroncini M, Molloy JK, Korgel BA, Ceroni P (2014) J Phys Chem Lett 5:3325–3329

    Article  CAS  Google Scholar 

  18. Pansare VJ, Hejazi S, Faenza WJ, Prud’homme RK (2012) Chem Mater 24:812–827

    Article  CAS  Google Scholar 

  19. Qian G, Wang ZY (2010) Chem Asian J 5:1006–1029

    Article  CAS  Google Scholar 

  20. Strekowski L (ed) (2008) Heterocyclic polymethine dyes—synthesis, properties and applications, topics in heterocyclic chemistry. Springer, Heidelberg

    Google Scholar 

  21. Wang ZY (2013) Near-infrared organic materials and emerging applications. CRC Press, FL

    Book  Google Scholar 

  22. Yuan L, Lin W, Zheng K, He L, Huang W (2013) Chem Soc Rev 42:622–661

    Article  CAS  Google Scholar 

  23. Peng X, Song F, Lu E, Wang Y, Zhou W, Fan J, Gao Y (2005) J Am Chem Soc 127:4170–4171

    Article  CAS  Google Scholar 

  24. Chen X, Peng X, Cui A, Wang B, Wang L, Zhang R (2006) J Photochem Photobiol A 181:79–85

    Article  CAS  Google Scholar 

  25. Shershov VE, Spitsyn MA, Kuznetsova VE, Timofeev EN, Ivashkina OA, Abramov IS, Nasedkina TV, Zasedatelev AS, Chudinov AV (2013) Dyes Pigm 97:353–360

    Article  CAS  Google Scholar 

  26. Bouit P-A, Di Piazza E, Rigaut S, Le Guennic B, Aronica C, Toupet L, Andraud C, Maury O (2008) Org Lett 10:4159–4162

    Article  CAS  Google Scholar 

  27. Fischer GM, Ehlers AP, Zumbusch A, Daltrozzo E (2007) Angew Chem Int Ed 46:3750–3753

    Article  CAS  Google Scholar 

  28. Fischer GM, Isomäki-Krondahl M, Göttker-Schnetmann I, Daltrozzo E, Zumbusch A (2009) Chem Eur J 15:4857–4864

    Article  CAS  Google Scholar 

  29. Fischer GM, Daltrozzo E, Zumbusch A (2011) Angew Chem Int Ed 50:1406–1409

    Article  CAS  Google Scholar 

  30. Fischer GM, Jüngst C, Isomäki-Krondahl M, Gauss D, Möller HM, Daltrozzo E, Zumbusch A (2010) Chem Commun 46:5289–5291

    Article  CAS  Google Scholar 

  31. Ajayaghosh A (2005) Acc Chem Res 38:449–459

    Article  CAS  Google Scholar 

  32. Sreejith S, Carol P, Chithra P, Ajayaghosh A (2008) J Mater Chem 18:264–274

    Article  CAS  Google Scholar 

  33. McEwen JJ, Wallace KJ (2009) Chem Commun 6339–6351

  34. Gassensmith JJ, Baumes JM, Smith BD (2009) Chem Commun 6329–6338

  35. Beverina L, Salice P (2010) Eur J Org Chem 2010:1207–1225

    Article  CAS  Google Scholar 

  36. Avirah RR, Jayaram DT, Adarsh N, Ramaiah D (2012) Org Biomol Chem 10:911–920

    Article  CAS  Google Scholar 

  37. Qin C, Wong W-Y, Han L (2013) Chem Asian J 8:1706–1719

    Article  CAS  Google Scholar 

  38. Hu L, Yan Z, Xu H (2013) RSC Adv 3:7667–7676

    Article  CAS  Google Scholar 

  39. Anees P, Sreejith S, Ajayaghosh A (2014) J Am Chem Soc 136:13233–13239

    Article  CAS  Google Scholar 

  40. Mayerhöffer U, Fimmel B, Würthner F (2012) Angew Chem Int Ed 51:164–167

    Article  CAS  Google Scholar 

  41. Mayerhöffer U, Gsänger M, Stolte M, Fimmel B, Würthner F (2013) Chem Eur J 19:218–232

    Article  CAS  Google Scholar 

  42. Loudet A, Burgess K (2007) Chem Rev 107:4891–4932

    Article  CAS  Google Scholar 

  43. Ulrich G, Ziessel R, Harriman A (2008) Angew Chem Int Ed 47:1184–1201

    Article  CAS  Google Scholar 

  44. Descalzo AB, Xu H-J, Shen Z, Rurack K (2008) Ann NY Acad Sci 1130:164–171

    Article  CAS  Google Scholar 

  45. Boens N, Leen V, Dehaen W (2012) Chem Soc Rev 41:1130–1172

    Article  CAS  Google Scholar 

  46. Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY, Burgess K (2013) Chem Soc Rev 42:77–88

    Article  CAS  Google Scholar 

  47. Ni Y, Wu J (2014) Org Biomol Chem 12:3774–3791

    Article  CAS  Google Scholar 

  48. Lu H, Mack J, Yang Y, Shen Z (2014) Chem Soc Rev 43:4778–4823

    Article  CAS  Google Scholar 

  49. Zhang X, Yu H, Xiao Y (2011) J Org Chem 77:669–673

    Article  CAS  Google Scholar 

  50. Poirel A, De Nicola A, Ziessel R (2012) Org Lett 14:5696–5699

    Article  CAS  Google Scholar 

  51. Lavis LD, Raines RT (2008) ACS Chem Biol 3:142–155

    Article  CAS  Google Scholar 

  52. Beija M, Afonso CAM, Martinho JMG (2009) Chem Soc Rev 38:2410–2433

    Article  CAS  Google Scholar 

  53. Sun Y-Q, Liu J, Lv X, Liu Y, Zhao Y, Guo W (2012) Angew Chem Int Ed 51:7634–7636

    Article  CAS  Google Scholar 

  54. Koide Y, Urano Y, Hanaoka K, Piao W, Kusakabe M, Saito N, Terai T, Okabe T, Nagano T (2012) J Am Chem Soc 134:5029–5031

    Article  CAS  Google Scholar 

  55. Yuan L, Lin W, Yang Y, Chen H (2011) J Am Chem Soc 134:1200–1211

    Article  CAS  Google Scholar 

  56. Qian G, Dai B, Luo M, Yu D, Zhan J, Zhang Z, Ma D, Wang ZY (2008) Chem Mater 20:6208–6216

    Article  CAS  Google Scholar 

  57. Qian G, Wang ZY (2010) Can J Chem 88:192–201

    Article  CAS  Google Scholar 

  58. Ellinger S, Graham KR, Shi P, Farley RT, Steckler TT, Brookins RN, Taranekar P, Mei J, Padilha LA, Ensley TR, Hu H, Webster S, Hagan DJ, Van Stryland EW, Schanze KS, Reynolds JR (2011) Chem Mater 23:3805–3817

    Article  CAS  Google Scholar 

  59. Bürckstümmer H, Weissenstein A, Bialas D, Würthner F (2011) J Org Chem 76:2426–2432

    Article  CAS  Google Scholar 

  60. Kadish KM, Smith KM, Guilard R (eds) (2000) The porphyrin handbook. Academic Press, San Diego

    Google Scholar 

  61. Flamigni L (2007) J Photochem Photobiol C 8:191–210

    Article  CAS  Google Scholar 

  62. Babu SS, Bonifazi D (2014) ChemPlusChem 79:895–906

    Article  CAS  Google Scholar 

  63. Armaroli N, Marconi G, Echegoyen L, Bourgeois JP, Diederich F (2000) Chem Eur J 6:1629–1645

    Article  CAS  Google Scholar 

  64. D’Souza F, Ito O (2009) Chem Commun 4913–4928

  65. Mohnani S, Bonifazi D (2010) Coord Chem Rev 254:2342–2362

    Article  CAS  Google Scholar 

  66. Vogel E (1996) Pure Appl Chem 68:1355–1360

    CAS  Google Scholar 

  67. Hill JP, D’Souza F, Ariga K (2012) In: Steed JV, Gale PA (eds) Supramolecular chemistry: from molecules to nanomaterials. Wiley, Hoboken

    Google Scholar 

  68. Bhupathiraju NVSDK, Rizvi W, Batteas JD, Drain CM (2016) Org Biomol Chem 14:389–408

    Article  CAS  Google Scholar 

  69. Gouterman M (1961) J Mol Spectrosc 6:138–163

    Article  CAS  Google Scholar 

  70. Harriman A, Hosie RJ (1981) J Chem Soc Faraday Trans 2(77):1695–1702

    Article  Google Scholar 

  71. Kalyanasundaram K (1992) Photochemistry of polypyridine and porphyrin complexes, vol 13. Academic Press, London

    Google Scholar 

  72. Harriman A (1982) J Chem Soc Faraday Trans 1(78):2727–2734

    Article  Google Scholar 

  73. Armaroli N, Diederich F, Echegoyen L, Habicher T, Flamigni L, Marconi G, Nierengarten J-F (1999) New J Chem 23:77–83

    Article  CAS  Google Scholar 

  74. Kalyanasundaram K (1992) Photochemistry of polypyridine and porphyrin complexes, vol 15. Academic Press, London

    Google Scholar 

  75. Scandola F, Chiorboli C, Prodi A, Iengo E, Alessio E (2006) Coord Chem Rev 250:1471–1496

    Article  CAS  Google Scholar 

  76. Prodi A, Indelli MT, Kleverlaan CJ, Scandola F, Alessio E, Gianferrara T, Marzilli LG (1999) Chem Eur J 5:2668–2679

    Article  CAS  Google Scholar 

  77. Ikonen M, Guez D, Marvaud V, Markovitsi D (1994) Chem Phys Lett 231:93–97

    Article  CAS  Google Scholar 

  78. Koren K, Borisov SM, Saf R, Klimant I (2011) Eur J Inorg Chem 2011:1531–1534

    Article  CAS  Google Scholar 

  79. Flamigni L, Gryko DT (2009) Chem Soc Rev 38:1635–1646

    Article  CAS  Google Scholar 

  80. Sinha W, Ravotto L, Ceroni P, Kar S (2015) Dalton Trans 44:17767–17773

    Article  CAS  Google Scholar 

  81. Ke X-S, Zhao H, Zou X, Ning Y, Cheng X, Su H, Zhang J-L (2015) J Am Chem Soc 137:10745–10752

    Article  CAS  Google Scholar 

  82. Borisov SM, Papkovsky DB, Ponomarev GV, DeToma AS, Saf R, Klimant I (2009) J Photochem Photobiol A 206:87–92

    Article  CAS  Google Scholar 

  83. Finikova OS, Cheprakov AV, Vinogradov SA (2005) J Org Chem 70:9562–9572

    Article  CAS  Google Scholar 

  84. Sommer JR, Shelton AH, Parthasarathy A, Ghiviriga I, Reynolds JR, Schanze KS (2011) Chem Mater 23:5296–5304

    Article  CAS  Google Scholar 

  85. Borek C, Hanson K, Djurovich PI, Thompson ME, Aznavour K, Bau R, Sun YR, Forrest SR, Brooks J, Michalski L, Brown J (2007) Angew Chem Int Ed 46:1109–1112

    Article  CAS  Google Scholar 

  86. Currie MJ, Mapel JK, Heidel TD, Goffri S, Baldo MA (2008) Science 321:226–228

    Article  CAS  Google Scholar 

  87. Niedermair F, Borisov SM, Zenkl G, Hofmann OT, Weber H, Saf R, Klimant I (2010) Inorg Chem 49:9333–9342

    Article  CAS  Google Scholar 

  88. Borisov SM, Nuss G, Haas W, Saf R, Schmuck M, Klimant I (2009) J Photochem Photobiol A 201:128–135

    Article  CAS  Google Scholar 

  89. Saito S, Osuka A (2011) Angew Chem Int Ed 50:4342–4373

    Article  CAS  Google Scholar 

  90. D’Souza F (2015) Angew Chem Int Ed 54:4713–4714

    Article  CAS  Google Scholar 

  91. Lim JM, Yoon ZS, Shin J-Y, Kim KS, Yoon M-C, Kim D (2009) Chem Commun 261–273

  92. Yoon ZS, Kwon JH, Yoon M-C, Koh MK, Noh SB, Sessler JL, Lee JT, Seidel D, Aguilar A, Shimizu S, Suzuki M, Osuka A, Kim D (2006) J Am Chem Soc 128:14128–14134

    Article  CAS  Google Scholar 

  93. Xie YS, Wei PC, Li X, Hong T, Zhang K, Furuta H (2013) J Am Chem Soc 135:19119–19122

    Article  CAS  Google Scholar 

  94. Yoon ZS, Cho D-G, Kim KS, Sessler JL, Kim D (2008) J Am Chem Soc 130:6930–6931

    Article  CAS  Google Scholar 

  95. Ikeda S, Toganoh M, Easwaramoorthi S, Lim JM, Kim D, Furuta H (2010) J Org Chem 75:8637–8649

    Article  CAS  Google Scholar 

  96. Fujino K, Hirata Y, Kawabe Y, Morimoto T, Srinivasan A, Toganoh M, Miseki Y, Kudo A, Furuta H (2011) Angew Chem Int Ed 50:6855–6859

    Article  CAS  Google Scholar 

  97. Wei PC, Zhang K, Li X, Meng DY, Âgren H, Ou ZP, Ng S, Furuta H, Xie YS (2014) Angew Chem Int Ed 53:14069–14073

    Article  CAS  Google Scholar 

  98. Lindsey JS, Mass O, Chen C-Y (2011) New J Chem 35:511–516

    Article  CAS  Google Scholar 

  99. Yang EY, Kirmaier C, Krayer M, Taniguchi M, Kim H-J, Diers JR, Bocian DF, Lindsey JS, Holten D (2011) J Phys Chem B 115:10801–10816

    Article  CAS  Google Scholar 

  100. Chen C-Y, Sun EJ, Fan DZ, Taniguchi M, McDowell BE, Yang EK, Diers JR, Bocian DF, Holten D, Lindsey JS (2012) Inorg Chem 51:9443–9464

    Article  CAS  Google Scholar 

  101. Vairaprakash P, Yang E, Sahin T, Taniguchi M, Krayer M, Diers JR, Wang A, Niedzwiedzki DM, Kirmaier C, Lindsey JS, Bocian DF, Holten D (2015) J Phys Chem B 119:4382–4395

    Article  CAS  Google Scholar 

  102. Muthiah C, Kee HL, Diers JR, Fan DZ, Ptaszek M, Bocian DF, Holten D, Lindsey JS (2008) Photochem Photobiol 84:786–801

    Article  CAS  Google Scholar 

  103. Kee HL, Nothdurft R, Muthiah C, Diers JR, Fan DZ, Ptaszek M, Bocian DF, Lindsey JS, Culver JP, Holten D (2008) Photochem Photobiol 84:1061–1072

    Article  CAS  Google Scholar 

  104. Crossley MJ, Burn PL (1991) J Chem Soc Chem Commun 1569–1571

  105. Tsuda A, Osuka A (2001) Science 293:79–82

    Article  CAS  Google Scholar 

  106. Bonifazi D, Scholl M, Song FY, Echegoyen L, Accorsi G, Armaroli N, Diederich F (2003) Angew Chem Int Ed 42:4966–4970

    Article  CAS  Google Scholar 

  107. Cho HS, Jeong DH, Cho S, Kim D, Matsuzaki Y, Tanaka K, Tsuda A, Osuka A (2002) J Am Chem Soc 124:14642–14654

    Article  CAS  Google Scholar 

  108. Frampton MJ, Accorsi G, Armaroli N, Rogers JE, Fleitz PA, McEwan KJ, Anderson HL (2007) Org Biomol Chem 5:1056–1061

    Article  CAS  Google Scholar 

  109. Pawlicki M, Morisue M, Davis NKS, McLean DG, Haley JE, Beuerman E, Drobizhev M, Rebane A, Thompson AL, Pascu SI, Accorsi G, Armaroli N, Anderson HL (2012) Chem Sci 3:1541–1547

    Article  CAS  Google Scholar 

  110. Diev VV, Schlenker CW, Hanson K, Zhong QW, Zimmerman JD, Forrest SR, Thompson ME (2012) J Org Chem 77:143–159

    Article  CAS  Google Scholar 

  111. Jiao CJ, Huang K-W, Guan Z, Xu Q-H, Wu J (2010) Org Lett 12:4046–4049

    Article  CAS  Google Scholar 

  112. Sessler JL, Johnson MR (1987) Angew Chem Int Ed Engl 26:678–680

    Article  Google Scholar 

  113. Iehl J, Vartanian M, Holler M, Nierengarten J-F, Delavaux-Nicot B, Strub J-M, Van Dorsselaer A, Wu YL, Mohanraj J, Yoosaf K, Armaroli N (2011) J Mater Chem 21:1562–1573

    Article  CAS  Google Scholar 

  114. Armaroli N, Accorsi G, Song FY, Palkar A, Echegoyen L, Bonifazi D, Diederich F (2005) ChemPhysChem 6:732–743

    Article  CAS  Google Scholar 

  115. Duncan TV, Susumu K, Sinks LE, Therien MJ (2006) J Am Chem Soc 128:9000–9001

    Article  CAS  Google Scholar 

  116. Chang M-H, Hoffmann M, Anderson HL, Herz LM (2008) J Am Chem Soc 130:10171–10178

    Article  CAS  Google Scholar 

  117. Hoffmann M, Kärnbratt J, Chang M-H, Herz LM, Albinsson B, Anderson HL (2008) Angew Chem Int Ed 47:4993–4996

    Article  CAS  Google Scholar 

  118. Sprafke JK, Kondratuk DV, Wykes M, Thompson AL, Hoffmann M, Drevinskas R, Chen W-H, Yong CK, Karnbratt J, Bullock JE, Malfois M, Wasielewski MR, Albinsson B, Herz LM, Zigmantas D, Beljonne D, Anderson HL (2011) J Am Chem Soc 133:17262–17273

    Article  CAS  Google Scholar 

  119. Rousseaux SAL, Gong JQ, Haver R, Odell B, Claridge TDW, Herz LM, Anderson HL (2015) J Am Chem Soc 137:12713–12718

    Article  CAS  Google Scholar 

  120. Parkinson P, Knappke CEI, Kamonsutthipaijit N, Sirithip K, Matichak JD, Anderson HL, Herz LM (2014) J Am Chem Soc 136:8217–8220

    Article  CAS  Google Scholar 

  121. Isago H (2015) Optical spectra of phthalocyanines and related compounds. A guide for beginners. Springer, Tokyo

    Book  Google Scholar 

  122. Ragoussi M-E, Ince M, Torres T (2013) Eur J Org Chem 2013:6475–6489

    Article  CAS  Google Scholar 

  123. Singh S, Aggarwal A, Bhupathiraju NVSDK, Arianna G, Tiwari K, Drain CM (2015) Chem Rev 115:10261–10306

    Article  CAS  Google Scholar 

  124. Rio Y, Rodriguez-Morgade MS, Torres T (2008) Org Biomol Chem 6:1877–1894

    Article  CAS  Google Scholar 

  125. Kobayashi N, Ogata H, Nonaka N, Luk’yanets EA (2003) Chem Eur J 9:5123–5134

    Article  CAS  Google Scholar 

  126. Łapok Ł, Obłoza M, Gorski A, Knyukshto V, Raichyonok T, Waluk J, Nowakowska M (2016) ChemPhysChem 17:1123–1135

    Article  CAS  Google Scholar 

  127. Soldatova AV, Kim J, Rizzoli C, Kenney ME, Rodgers MAJ, Rosa A, Ricciardi G (2011) Inorg Chem 50:1135–1149

    Article  CAS  Google Scholar 

  128. Kim J, Soldatova AV, Rodgers MAJ, Kenney ME (2013) Polyhedron 57:64–69

    Article  CAS  Google Scholar 

  129. Borisov SM, Zenkl G, Klimant I (2010) ACS Appl Mater Interfaces 2:366–374

    Article  CAS  Google Scholar 

  130. Ho C-L, Li H, Wong W-Y (2014) J Organomet Chem 751:261–285

    Article  CAS  Google Scholar 

  131. Zhang KY, Liu SJ, Zhao Q, Li FY, Huang W (2015) In: Lo KK-W (ed) Luminescent and photoactive transition metal complexes as biomolecular probes and cellular reagents, structure and bonding, vol 165, pp 131–180

  132. Kumar A, Sun SS, Lees AJ (2010) In: Lees AJ (ed) Photophysics of organometallics, topics in organometallic chemistry, vol 29, pp 1–35

  133. Kirgan RA, Sullivan BP, Rillema DP (2007) In: Balzani V, Campagna S (eds) Photochemistry and photophysics of coordination compounds II, topics in current chemistry, vol 281, pp 45–100

  134. Worl LA, Duesing R, Chen PY, Dellaciana L, Meyer TJ (1991) J Chem Soc Dalton Trans 849–858

  135. Tapolsky G, Duesing R, Meyer TJ (1990) Inorg Chem 29:2285–2297

    Article  CAS  Google Scholar 

  136. Caspar JV, Sullivan BP, Meyer TJ (1984) Inorg Chem 23:2104–2109

    Article  CAS  Google Scholar 

  137. Yam VW-W, Lau VC-Y, Cheung K-K (1995) Organometallics 14:2749–2753

    Article  CAS  Google Scholar 

  138. Villegas JM, Stoyanov SR, Huang W, Rillema DP (2005) Dalton Trans 1042–1051

  139. Villegas JM, Stoyanov SR, Huang W, Rillema DP (2005) Inorg Chem 44:2297–2309

    Article  CAS  Google Scholar 

  140. Yu T, Tsang DP-K, Au VK-M, Lam WH, Chan M-Y, Yam VW-W (2013) Chem Eur J 19:13418–13427

    Article  CAS  Google Scholar 

  141. Balzani V, Juris A, Venturi M, Campagna S, Serroni S (1996) Chem Rev 96:759–833

    Article  CAS  Google Scholar 

  142. Campagna S, Puntoriero F, Nastasi F, Bergamini G, Balzani V (2007) In: Balzani V, Campagna S (eds) Photochemistry and photophysics of coordination compounds I, topics in current chemistry, vol 280, pp 117–214

  143. Chi Y, Chou P-T (2007) Chem Soc Rev 36:1421–1431

    Article  CAS  Google Scholar 

  144. Kumaresan D, Shankar K, Vaidya S, Schmehl RH (2007) In: Balzani V, Campagna S (eds) Photochemistry and photophysics of coordination compounds II, topics in current chemistry, vol 281, pp 101–142

  145. Sauvage J-P, Collin J-P, Chambron J-C, Guillerez S, Coudret C, Balzani V, Barigelletti F, De Cola L, Flamigni L (1994) Chem Rev 94:993–1019

    Article  CAS  Google Scholar 

  146. Carlson B, Phelan GD, Kaminsky W, Dalton L, Jiang XZ, Liu S, Jen AK-Y (2002) J Am Chem Soc 124:14162–14172

    Article  CAS  Google Scholar 

  147. Caspar JV, Meyer TJ (1983) J Phys Chem 87:952–957

    Article  CAS  Google Scholar 

  148. Bergman SD, Gut D, Kol M, Sabatini C, Barbieri A, Barigelletti F (2005) Inorg Chem 44:7943–7950

    Article  CAS  Google Scholar 

  149. Bergman SD, Goldberg I, Barbieri A, Kol M (2005) Inorg Chem 44:2513–2523

    Article  CAS  Google Scholar 

  150. Bergman SD, Goldberg I, Barbieri A, Barigelletti F, Kol M (2004) Inorg Chem 43:2355–2367

    Article  CAS  Google Scholar 

  151. Lee T-C, Hung J-Y, Chi Y, Cheng Y-M, Lee G-H, Chou P-T, Chen C-C, Chang C-H, Wu C-C (2009) Adv Funct Mater 19:2639–2647

    Article  CAS  Google Scholar 

  152. Kalyanasundaram K (1992) Photochemistry of polypyridine and porphyrin complexes. Academic Press, London

    Google Scholar 

  153. Matar F, Ghaddar TH, Walley K, DosSantos T, Durrant JR, O’Regan B (2008) J Mater Chem 18:4246–4253

    Article  CAS  Google Scholar 

  154. Damas A, Gullo MP, Rager MN, Jutand A, Barbieri A, Amouri H (2013) Chem Commun 49:3796–3798

    Article  CAS  Google Scholar 

  155. Tung Y-L, Lee S-W, Chi Y, Chen L-S, Shu C-F, Wu F-I, Carty AJ, Chou P-T, Peng S-M, Lee G-H (2005) Adv Mater 17:1059–1064

    Article  CAS  Google Scholar 

  156. Abrahamsson M, Jäger M, Kumar RJ, Österman T, Persson P, Becker H-C, Johansson O, Hammarström L (2008) J Am Chem Soc 130:15533–15542

    Article  CAS  Google Scholar 

  157. Abrahamsson M, Jäger M, Österman T, Eriksson L, Persson P, Becker H-C, Johansson O, Hammarström L (2006) J Am Chem Soc 128:12616–12617

    Article  CAS  Google Scholar 

  158. Montalti M, Credi A, Prodi L, Gandolfi MT (2006) Handbook of photochemistry, 3rd edn. CRC Press, FL, pp 617–633

    Google Scholar 

  159. Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigelletti F (2007) Photochemistry and photophysics of coordination compounds II, topics in current chemistry, vol 281, pp 143–203

  160. Djurovich PI, Thompson ME (2007) In: Yersin H (ed) Highly efficient OLEDs with phosphorescent materials, Wiley, Weinheim, pp 131–161

  161. Tsuboyama A, Okada S, Ueno K (2007) In: Yersin H (ed) Highly efficient OLEDs with phosphorescent materials, Wiley, Weinheim, pp 163–183

  162. Chen H-Y, Yang C-H, Chi Y, Cheng Y-M, Yeh Y-S, Chou P-T, Hsieh H-Y, Liu C-S, Peng S-M, Lee G-H (2006) Can J Chem 84:309–318

    Article  CAS  Google Scholar 

  163. Polson M, Ravaglia M, Fracasso S, Garavelli M, Scandola F (2005) Inorg Chem 44:1282–1289

    Article  CAS  Google Scholar 

  164. Williams JAG (2007) In: Balzani V, Campagna S (eds) Photochemistry and photophysics of coordination compounds II, topics in current chemistry, vol 281, pp 205–268

  165. Adams CJ, Fey N, Harrison ZA, Sazanovich IV, Towrie M, Weinstein JA (2008) Inorg Chem 47:8242–8257

    Article  CAS  Google Scholar 

  166. Paw W, Cummings SD, Mansour MA, Connick WB, Geiger DK, Eisenberg R (1998) Coord Chem Rev 171:125–150

    Article  CAS  Google Scholar 

  167. Cummings SD, Eisenberg R (1996) J Am Chem Soc 118:1949–1960

    Article  CAS  Google Scholar 

  168. Kozhevnikov DN, Kozhevnikov VN, Shafikov MZ, Prokhorov AM, Bruce DW, Williams JAG (2011) Inorg Chem 50:3804–3815

    Article  CAS  Google Scholar 

  169. Yam VW-W, Chan KH-Y, Wong KM-C, Zhu N (2005) Chem Eur J 11:4535–4543

    Article  Google Scholar 

  170. Michalec JF, Bejune SA, McMillin DR (2000) Inorg Chem 39:2708–2709

    Article  CAS  Google Scholar 

  171. Baik C, Han W-S, Kang Y, Kang SO, Ko J (2006) J Organomet Chem 691:5900–5910

    Article  CAS  Google Scholar 

  172. Chan C-W, Lai T-F, Che C-M, Peng S-M (1993) J Am Chem Soc 115:11245–11253

    Article  CAS  Google Scholar 

  173. Cocchi M, Virgili D, Fattori V, Williams JAG, Kalinowski J (2007) Appl Phys Lett 90:023506

    Article  CAS  Google Scholar 

  174. Rossi E, Murphy L, Brothwood PL, Colombo A, Dragonetti C, Roberto D, Ugo R, Cocchi M, Williams JAG (2011) J Mater Chem 21:15501–15510

    Article  CAS  Google Scholar 

  175. Yam VW-W, Cheng EC-C (2007) In: Balzani V, Campagna S (eds) Photochemistry and photophysics of coordination compounds II, topics in current chemistry, vol 281, pp 269–309

  176. To W-P, Tong GS-M, Lu W, Ma CS, Liu J, Chow AL-F, Che C-M (2012) Angew Chem Int Ed 51:2654–2657

    Article  CAS  Google Scholar 

  177. Sculfort S, Braunstein P (2011) Chem Soc Rev 40:2741–2760

    Article  CAS  Google Scholar 

  178. Armaroli N, Accorsi G, Cardinali F, Listorti A (2007) In: Balzani V, Campagna S (eds) Photochemistry and photophysics of coordination compounds I, topics in current chemistry, vol 280, pp 69–115

  179. Armaroli N (2001) Chem Soc Rev 30:113–124

    Article  CAS  Google Scholar 

  180. Shan X-c, Jiang F-l, Yuan D-q, Zhang H-b, Wu M-y, Chen L, Wei J, Zhang S-q, Pan J, Hong M-c (2013) Chem Sci 4:1484–1489

    Article  CAS  Google Scholar 

  181. Tsuge K, Chishina Y, Hashiguchi H, Sasaki Y, Kato M, Ishizaka S, Kitamura N (2016) Coord Chem Rev 306:636–651

    Article  CAS  Google Scholar 

  182. Ford PC, Cariati E, Bourassa J (1999) Chem Rev 99:3625–3647

    Article  CAS  Google Scholar 

  183. Kyle KR, Ryu CK, Di Benedetto JA, Ford PC (1991) J Am Chem Soc 113:2954–2965

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank CNR [Project PHEEL, CNR-CONICET joint project “Carbon Dioxide Reduction on Photocatalytic Nanomaterials”, CNR-CNRS(L) joint project “Development of a Modular Integrated Device for Solar Energy Conversion”, and Progetto Bandiera N-Chem]. V.K.P. thanks department of science and technology (DST-SERB), Government of India for a Young Scientist Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vakayil K. Praveen or Nicola Armaroli.

Additional information

This article is part of the Topical Collection “Photoluminescent Materials and Electroluminescent Devices”; edited by Nicola Armaroli and Henk Bolink.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbieri, A., Bandini, E., Monti, F. et al. The Rise of Near-Infrared Emitters: Organic Dyes, Porphyrinoids, and Transition Metal Complexes. Top Curr Chem (Z) 374, 47 (2016). https://doi.org/10.1007/s41061-016-0048-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0048-9

Keywords

Navigation