Skip to main content
Log in

Robust Polynomial Observer-Based Chaotic Synchronization for Non-ideal Channel Secure Communication: An SOS Approach

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a novel chaotic-based secure communication scheme for non-ideal transmitting public channel. The proposed approach employs a polynomial model and sum-of-squares (SOS) decomposition technique to synchronize chaotic transmitter and receiver systems. Because of high secure communication demands and practical limitations in transforming the signals on the public channel, only limited information of the transmitter system is transformed. Therefore, at the receiver side, a robust polynomial observer-based controller is proposed to estimate the states of the transmitter and synchronize the chaotic systems. Also, since the channel is noisy and non-ideal, H performance criterion is used and the sufficient design conditions of controller and observer are derived in terms of SOS decomposition such that the information is effectively recovered in the presence of external disturbances and noisy environment. In addition, to further remove the effect of the noise on the information recovery, a Savitzky–Golay polynomial filter is utilized. Finally, to show the effectiveness of the proposed approach, two chaotic and hyperchaotic case studies are considered and the obtained results are compared with the existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arefi MM, Jahed-Motlagh MR (2010) Adaptive robust synchronization of Rossler systems in the presence of unknown matched time-varying parameters. Commun Nonlinear Sci Numer Simul 15(12):4149–4157

    Article  MATH  Google Scholar 

  • Arefi MM, Jahed-Motlagh MR (2012) Robust synchronization of Rossler systems with mismatched time-varying parameters. Nonlinear Dyn 67(2):1233–1245

    Article  MathSciNet  MATH  Google Scholar 

  • Asemani MH, Majd VJ (2009) Stability of output-feedback DPDC-based fuzzy synchronization of chaotic systems via LMI. Chaos Solitons Fractals 42(2):1126–1135

    Article  MathSciNet  MATH  Google Scholar 

  • Chen D, Zhao W, Sprott JC, Ma X (2013) Application of Takagi–Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonlinear Dyn 73(3):1495–1505

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng G, Wang L, Xu W, Chen G (2017) Carrier index differential chaos shift keying modulation. IEEE Trans Circuits Syst II Express Briefs 64(8):907–911

    Article  Google Scholar 

  • Chou H-G, Chuang C-F, Wang W-J, Lin J-C (2013) A fuzzy-model-based chaotic synchronization and its implementation on a secure communication system. IEEE Trans Inf Forensics Secur 8(12):2177–2185

    Article  Google Scholar 

  • Fuh C-C, Tsai H-H, Yao W-H (2012) Combining a feedback linearization controller with a disturbance observer to control a chaotic system under external excitation. Commun Nonlinear Sci Numer Simul 17(3):1423–1429

    Article  MathSciNet  MATH  Google Scholar 

  • Hou Y-Y (2012) Controlling chaos in permanent magnet synchronous motor control system via fuzzy guaranteed cost controller. Abstr Appl Anal 2012:1–10

    Article  MATH  Google Scholar 

  • Jarvis-Wloszek ZW (2003) Lyapunov based analysis and controller synthesis for polynomial systems using sum-of-squares optimization. Doctoral dissertation, University of California, Berkeley

  • Kajbaf A, Akhaee MA, Sheikhan M (2016) Fast synchronization of non-identical chaotic modulation-based secure systems using a modified sliding mode controller. Chaos Solitons Fractals 84:49–57

    Article  MATH  Google Scholar 

  • Li J, Yu B, Zhao W, Chen W (2014) A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy. Appl Spectrosc Rev 49(8):666–691

    Article  Google Scholar 

  • Lin T-C, Huang F-Y, Du Z, Lin Y-C (2015) Synchronization of fuzzy modeling chaotic time delay memristor-based Chua’s circuits with application to secure communication. Int J Fuzzy Syst 17(2):206–214

    Article  MathSciNet  Google Scholar 

  • Liu S, Zhang F (2014) Complex function projective synchronization of complex chaotic system and its applications in secure communication. Nonlinear Dyn 76(2):1087–1097

    Article  MathSciNet  MATH  Google Scholar 

  • Luo S, Song Y (2016) Chaos analysis-based adaptive backstepping control of the microelectromechanical resonators with constrained output and uncertain time delay. IEEE Trans Ind Electron 63(10):6217–6225

    Article  Google Scholar 

  • Mardani MM, Vafamand N, Shokrian M, Sha Sadeghi M, Khayatian A (2017) Sum-of-squares-based finite-time adaptive sliding mode control of uncertain polynomial systems with input nonlinearities. Asian J Control. https://doi.org/10.1002/asjc.1625

    Google Scholar 

  • Naderi B, Kheiri H (2016) Exponential synchronization of chaotic system and application in secure communication. Opt Int J Light Electron Opt 127(5):2407–2412

    Article  Google Scholar 

  • Orfanidis SJ (1996) Introduction to signal processing. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Papachristodoulou A, Anderson J, Valmorbida G, Prajna S, Seiler P, Parrilo PA (2016) SOSTOOLS: sum of squares optimization toolbox for MATLAB. Version 3.01, 01 Jul 2016

  • Pitarch Pérez JL (2013) Contributions to fuzzy polynomial techniques for stability analysis and control. PhD dissertation, Polytechnic University of Valencia, Valencia, Spain

  • Pitarch JL, Rakhshan M, Mardani MM, Sadeghi M (2017) Distributed saturated control for a class of semilinear PDE systems: a SOS approach. IEEE Trans Fuzzy Syst, p 1. https://doi.org/10.1109/TFUZZ.2017.2688379

  • Rakhshan M, Vafamand N, Khooban MH, Blaabjerg F (2017) Maximum power point tracking control of photovoltaic systems: a polynomial fuzzy model-based approach. IEEE J Emerg Sel Top Power Electron. https://doi.org/10.1109/JESTPE.2017.2708815

    Google Scholar 

  • Sadeghi MS, Vafamand N, Khooban MH (2016) LMI-based stability analysis and robust controller design for a class of nonlinear chaotic power systems. J Frankl Inst 353(13):2835–2858

    Article  MathSciNet  MATH  Google Scholar 

  • Senouci A, Boukabou A (2014) Predictive control and synchronization of chaotic and hyperchaotic systems based on a T–S fuzzy model. Math Comput Simul 105:62–78

    Article  MathSciNet  Google Scholar 

  • Tanaka K (2001) Fuzzy control systems design and analysis: a linear matrix inequality approach. Wiley, New York

    Book  Google Scholar 

  • Vafamand N, Rakhshan M (2016) Dynamic model-based fuzzy controller for maximum power point tracking of photovoltaic systems: an linear matrix inequality approach. J Dyn Syst Meas, Control

    Google Scholar 

  • Vafamand N, Asemani MH, Khayatiyan A (2016) A robust L1 controller design for continuous-time TS systems with persistent bounded disturbance and actuator saturation. Eng Appl Artif Intell 56:212–221

    Article  Google Scholar 

  • Vafamand N, Khooban MH, Khayatian A, Blaabjerg F (2017a) Design of robust double-fuzzy-summation non-PDC controller for chaotic power systems. J Dyn Syst Meas, Control. https://doi.org/10.1115/1.4037527

    Google Scholar 

  • Vafamand N, Asemani MH, Khayatian A (2017b) Robust L1 observer-based non-PDC controller design for persistent bounded disturbed TS fuzzy systems. IEEE Trans Fuzzy Syst. 99(1). https://doi.org/10.1109/TFUZZ.2017.2724018

  • Vembarasan V, Balasubramaniam P (2013) Chaotic synchronization of Rikitake system based on T–S fuzzy control techniques. Nonlinear Dyn 74(1–2):31–44

    Article  MathSciNet  MATH  Google Scholar 

  • Wu X-J, Wang H, Lu H-T (2011) Hyperchaotic secure communication via generalized function projective synchronization. Nonlinear Anal Real World Appl 12(2):1288–1299

    Article  MathSciNet  MATH  Google Scholar 

  • Yang T (2004) A survey of chaotic secure communication systems. Int J Comput Cogn 2(2):81–130

    Google Scholar 

  • Yang J, Chen Y, Zhu F (2015a) Associated observer-based synchronization for uncertain chaotic systems subject to channel noise and chaos-based secure communication. Neurocomputing 167:587–595

    Article  Google Scholar 

  • Yang X, Ho DWC, Lu J, Song Q (2015b) Finite-time cluster synchronization of T–S fuzzy complex networks with discontinuous subsystems and random coupling delays. IEEE Trans Fuzzy Syst 23(6):2302–2316

    Article  Google Scholar 

  • Yang C-H, Wu C-L, Chen Y-J, Shiao S-H (2015c) Reduced fuzzy controllers for Lorenz–Stenflo system control and synchronization. Int J Fuzzy Syst 17(2):158–169

    Article  MathSciNet  Google Scholar 

  • Yang S, Li C, Huang T (2016) Impulsive synchronization for TS fuzzy model of memristor-based chaotic systems with parameter mismatches. Int J Control Autom Syst 14(3):854–864

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Vafamand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vafamand, N., Khorshidi, S. Robust Polynomial Observer-Based Chaotic Synchronization for Non-ideal Channel Secure Communication: An SOS Approach. Iran J Sci Technol Trans Electr Eng 42, 83–94 (2018). https://doi.org/10.1007/s40998-018-0047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-018-0047-7

Keywords

Navigation