Skip to main content
Log in

Influence of P2O5 and SiO2 Addition on the Phase, Microstructure, and Electrical Properties of KNbO3

  • Research paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

In this contribution, the effect of \(\hbox {P}_{2}\hbox {O}_{5}\) and \(\hbox {SiO}_{2}\) addition on the phase, microstructure, and electrical properties of \(\hbox {KNbO}_{3}\) was studied. Sample powders with the general formula \((1-x)\hbox {KNbO}_{3}\cdot x\hbox {P}_{2}\hbox {O}_{5}\,(x = 0.03, 0.05)\) and \((1-x)\hbox {KNbO}_{3}\cdot x\hbox {SiO}_{2}\,(x = 0.1)\) were prepared via mixed-oxide route. The thermal behavior of the mixed-milled powder was investigated by thermogravimetry and differential thermal analysis which revealed an overall weight loss of 33.4 wt % in the temperature range of \(30\le T \le 1200\,^\circ\)C and crystallization exotherm occurring at about 795 °C. The present results indicated that \(\hbox {P}_{2}\hbox {O}_{5}\) acted as a sintering aid and lowered the sintering temperature by about 30 °C and promoted densification of \(\hbox {KNbO}_{3}\). Sample compositions at various stages of processing were characterized using X-ray diffraction. Samples sintered at \(T \le\) 1020 °C revealed mainly \(\hbox {KNbO}_{3}\) together with a couple of low-intensity \(\hbox {K}_{3}\hbox {NbO}_{4}\) peaks as a secondary phase. The scanning electron micrographs of \((1-x)\hbox {KNbO}_{3}\cdot x\hbox {SiO}_{2}\,(x = 0.1)\) samples showed a slight increase in the average grain size from 3.76 ± 0.37 to 3.86 ± 0.74 \(\upmu\)m with an increase in sintering temperature from 1000 to 1020 °C. Strong variations in dielectric constant and loss tangent were observed due to \(\hbox {P}_{2}\hbox {O}_{5}\) and \(\hbox {SiO}_{2}\) addition as well as frequency of the applied AC signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acker J, Kungl H, Hoffmann MJ (2010) Influence of Alkaline and niobium excess on sintering and microstructure of sodiumpotassium niobate (\(\text{ K }_{0.5}\text{ Na }_{0.5}\))\(\text{ NbO }_{3}\). J Am Ceram Soc 93:1270–1281

    Google Scholar 

  • Alkoy EM, Papila M (2010) Microstructural features and electrical properties of copper oxide added potassium sodium niobate ceramics. Ceram Int 36:1921–1927

    Article  Google Scholar 

  • Bartnikas R, Eichhorn RM (1983) Engineering dielectrics electrical properties of solid insulating materials: molecular structure and electrical behavior. ASTM Committee

  • Chaiyo N, Ruangphanit A, Muanghlua R, Niemcharoen S, Boonchom B, Vittayakorn N (2011) Synthesis of potassium niobate (\(\text{ KNbO }_{3}\)) nano-powder by a modified solid-state reaction. J Mater Sci 46:1585–1590

    Article  Google Scholar 

  • Chaliha RS, Annapurna K, Tarafder A, Tiwari VS, Gupta PK, Karmakar B (2010) Optical and dielectric properties of isothermally crystallized nano-\(\text{ KNbO }_{3}\) in Er\(^{3+}\)-doped \(\text{ K }_{2}\)O-\(\text{ Nb }_{2}\text{ O }_{5}\)-\(\text{ SiO }_{2}\) glasses. Spectrochim Acta Part A 75:243–250

    Article  Google Scholar 

  • Cullity BD (1977) Elements of X-ray diffraction, 2nd edn. AddisonWesley Publishing Co., London

    Google Scholar 

  • Egerton L, Dillon DM (1959) Piezoelectric and dielectric properties of ceramics in the system potassium–sodium niobate. J Am Ceram Soc 42:438–442

    Article  Google Scholar 

  • Gao D, Kwok KW, Lin D, Chan HLW (2009) Microstructure, electrical properties of \(\text{ CeO }_{2}\)-doped (\(\text{ K }_{0.5}\text{ Na }_{0.5}\))\(\text{ NbO }_{3}\) lead-free piezoelectric ceramics. J Mater Sci 44:2466–2470

    Article  Google Scholar 

  • Günter P (1974) Electro-optical properties of \(\text{ KNbO }_{3}\). Opt. Commun. 11:285–290

    Article  Google Scholar 

  • Günter P (1982) Holography, coherent light amplification and optical phase conjugation with photorefractive materials. Phys Rep 93:199–299

    Article  Google Scholar 

  • Hao J, Xu Z, Chu R, Zhang Y, Li G, Yin Q (2009) Effects of \(\text{ MnO }_{2}\) on phase structure, microstructure and electrical properties of (\(\text{ K }_{0.5}\text{ Na }_{0.5}\))\(_{0.94}\text{ Li }_{0.06}\text{ NbO }_{3}\) lead-free ceramics. Mater Chem Phys 118:229–233

    Article  Google Scholar 

  • Hertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818

    Article  Google Scholar 

  • Hsiang HI, Hsi CS, Huang CC, Fu SL (2008) Sintering behavior and dielectric properties of \(\text{ BaTiO }_{3}\) ceramics with glass addition for internal capacitor of LTCC. J Alloys Compd 459:307–310

    Article  Google Scholar 

  • Huang T, Chang YS, Chen GJ, Chang YH (2007) Preparation and structures of the \(\text{ La }_{1-x}\text{ K }_{x}\text{ Co }_{1-x}\text{ Nb }_{x}\text{ O }_{3}\) (x = 0-l) system. J Alloys Compd 430:205–211

    Article  Google Scholar 

  • Iqbal Y, Manan A (2012) Phase, microstructure and microwave dielectric properties of Zr-doped \(\text{ SrLa }_{4}\text{ Ti }_{5-x}\text{ Zr }_{x}\text{ O }_{17}\). J Mater Sci: Mater Electron 23:536–541

    Google Scholar 

  • Jaeger RE, Egerton L (1962) Hot pressing of potassium sodium niobates. J Am Ceram Soc 45:209–213

    Article  Google Scholar 

  • Jaffe H (1958) Piezoelectric ceramics. J Am Ceram Soc 41:494–498

    Article  Google Scholar 

  • Kim IS, Jung WH, Inaguma Y, Nakamura T, Itoh M (1995) Dielectric properties of a-site deficient perovskite-type lanthanum-calcium-titanium oxide solid solution system [(1–x)\(\text{ La }_{23}\text{ TiO }_{3-x}\text{ CaTiO }_{3}\) (0.1 \(\le\) x \(\le\) 0.96)]. Mater Res Bull 30:307–316

    Article  Google Scholar 

  • Ko JB, Hong JH (2010) Structural and thermal properties of potassium niobiate glasses for an application in electro-optical product design and manufacture. J Ceram Process Res 11:116–119

    Google Scholar 

  • Kosec M, Kolar D (1975) On activated sintering and electrical properties of \(\text{ NaKNbO }_{3}\). Mater Res Bull 10:335–339

    Article  Google Scholar 

  • Liu JF, Li XL, Li YD (2003) Synthesis and characterization of nanocrystalline niobates. J Cryst Growth 247:419–424

    Article  Google Scholar 

  • Maeder MD, Damjanovic D, Setter N (2004) Lead free piezoelectric materials. J Electroceram 13:385–392

    Article  Google Scholar 

  • Magrez A, Vasco E, Seo JW, Dieker C, Setter N, Forr L (2006) Growth of single-crystalline \(\text{ KNbO }_{3}\) nanostructures. J Phys Chem B 110:58–61

    Article  Google Scholar 

  • Makovec D, Priboǎič I, Drofenik M (2008) \(\text{ TiO }_{2}\) as a sintering additive for \(\text{ KNbO }_{3}\) ceramics. Ceram Int 34:89–94

    Article  Google Scholar 

  • Mansour SF (2005) Frequency and composition dependence on the dielectric properties for Mg–Zn ferrite. Egypt J Solids 28:263–273

    Google Scholar 

  • Raja S, Babu RR, Ramamurthi K (2017) Structural and ferromagnetic properties of \(\text{ KNbO }_{3}\) microrods. AIP Conf Proc 1832:140045

    Article  Google Scholar 

  • Ramajo LA, Taub J, Castro MS (2014) Effect of ZnO addition on the structure, microstructure and dielectric and piezoelectric properties of \(\text{ K }_{0.5}\text{ Na }_{0.5}\text{ NbO }_{3}\) ceramics. Mater Res 17:728–733

    Article  Google Scholar 

  • Reisman A, Holtzberg F, Triebwasser S, Berkenblit M (1956) Preparation of pure potassium metaniobate. J Am Chem Soc 78:719–720

    Article  Google Scholar 

  • Ringgaard E, Wurlitzer T (2005) Lead-free piezoceramics based on alkali niobates. J Euro Ceram Soc 25:2701–2706

    Article  Google Scholar 

  • Rou SH, Hren PD, Hren JJ, Graettinger TM, Ameen MS, Auciello OH, Kingon AI (1990) High resolution imaging of twin and antiphase domain boundaries in perovskite \(\text{ KNbO }_{3}\) thin films. MRS Proc 183:285–290

    Article  Google Scholar 

  • Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87

    Article  Google Scholar 

  • Sen C, Alkan B, Akin I, Yucel O, Sahin FC, Goller G (2011) Microstructure and ferroelectric properties of spark plasma sintered Li substituted \(\text{ K }_{0.5}\text{ Na }_{0.5}\text{ NbO }_{3}\) ceramics. J Ceram Soc Jpn 119:355–361

    Article  Google Scholar 

  • Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19:113–126

    Article  Google Scholar 

  • Simões AZ, Ries A, Riccardi CS, Gonzalez AH, Zaghete MA, Stojanovic BD, Cilense M, Varela JA (2004) Potassium niobate thin films prepared through polymeric precursor method. Mater Lett 58:2537–2540

    Article  Google Scholar 

  • Singh AK, Choudhary RNP (2003) Structural, dielectric and electrical properties of \(\text{ Pb }_{5-x}\text{ La }_{1+x}\text{ Ti }_{3+x}\text{ Nb }_{7-x}\text{ O }_{30}\) (x = 0, 1 and 2) ceramics. J Phys Chem Solids 64:1185–1193

    Article  Google Scholar 

  • Stefanovich SY, Sigaev VN, Lotarev SV, Lopatina EV, Mosunov AV, Segalla SG, Chertin DP (2013) Functional glass ceramic based on potassium niobate. Glass Ceram 70:135–140

    Article  Google Scholar 

  • Su S, Zuo R, Wang X, Li L (2010) Sintering, microstructure and piezoelectric properties of CuO and \(\text{ SnO }_{2}\) co-modified sodium potassium niobate ceramics. Mater Res Bull 45:124–128

    Article  Google Scholar 

  • Uematsu Y (1974) Nonlinear optical properties of \(\text{ KNbO }_{3}\) single crystal in the orthorhombic phase. Jpn J Appl Phys 13:1362–1368

    Article  Google Scholar 

  • Wang R, Xie R, Sekiya T, Shimojo Y, Akimune Y, Hirosaki N, Itoh M (2002) Piezoelectric properties of spark-plasma-sintered (\(\text{ Na }_{0.5}\text{ K }_{0.5}\))\(\text{ NbO }_{3}\text{ PbTiO }_{3}\) ceramics. Jpn J Appl Phys 41:7119–7122

    Article  Google Scholar 

  • Wu SY, Zhang W, Chen XM (2010) Formation mechanism of \(\text{ NaNbO }_{3}\) powders during hydrothermal synthesis. J Mater Sci: Mater Electron 21:450–455

    Google Scholar 

  • Yang MR, Tsai CC, Hong CS, Chu SY, Yang SL (2010) Piezoelectric and ferroelectric properties of CN-doped \(\text{ K }_{0.5}\text{ Na }_{0.5}\text{ NbO }_{3}\) lead-free ceramics. J Appl Phys 108:094103–094108

    Article  Google Scholar 

  • Zhou H, Zheng S, Zhang Y (2004) A new way of synthesis of non-linear optical potassium niobate powder. J Mater Sci 39:4359–4361

    Article  Google Scholar 

  • Zuo R, Rödel J, Chen R, Li L (2006) Sintering and electrical properties of lead-free \(\text{ Na }_{0.5}\text{ K }_{0.5}\text{ NbO }_{3}\) piezoelectric ceramics. J Am Chem Soc 89:2010–2015

    Google Scholar 

Download references

Acknowledgements

Authors greatly acknowledge the financial support from the Higher Education Commission (HEC) of Pakistan and laboratory support extended by MRL, Department of Physics, University of Peshawar, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, S., Ullah, I., Iqbal, Y. et al. Influence of P2O5 and SiO2 Addition on the Phase, Microstructure, and Electrical Properties of KNbO3. Iran J Sci Technol Trans Sci 43, 1981–1987 (2019). https://doi.org/10.1007/s40995-018-0665-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-018-0665-y

Keywords

Navigation