Skip to main content
Log in

Synthesis of potassium niobate (KNbO3) nano-powder by a modified solid-state reaction

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Crystalline lead-free piezoelectric potassium niobate (KNbO3) powders have been synthesized through a modified solid-state reaction method. The thermal behavior of the K2C2O4·H2O and Nb2O5 raw material mixture was investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The X-ray diffraction technique (XRD) was used to investigate the phase formation and purity. The morphology of the powder obtained was characterized using a scanning electron microscope (SEM). The XRD pattern showed that the monophasic perovskite phase of KNbO3 could be synthesized successfully at a temperature as low as 550 °C for 240 min, with an average crystallite size of 36 ± 8 nm. The SEM images suggested that the average particle size of the powder obtained was 278 ± 75 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miclea C, Tanasoiu C, Miclea CF, Amarande L, Gheorghiu A, Spanulescu I, Plavitu C, Miclea CT, Cioangher MC, Trupina L, Iuga A (2007) J Eur Ceram Soc 27:4055

    Article  CAS  Google Scholar 

  2. Setter N (2002) Piezoelectric materials in devices. Ceramic lab, EPFL, Switzerland

  3. Lead and you: a guide to working safely with lead (2003) HSE (UK Health and Safety Executive). http://www.hse.gov.uk/pubns/indg305.pdf. Accessed 25 Apr 2004

  4. Commission of the European Communities (2003) Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Off J Eur Union, L37, 46:24

    Google Scholar 

  5. Commission of the European Communities (2003) Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off J Eur Union, L37, 46:19

    Google Scholar 

  6. Ichiki M, Zhang L, Tanaka M, Maeda R (2004) J Eur Ceram Soc 24:1693

    Article  CAS  Google Scholar 

  7. Liu J-F, Li X-L, Li Y-D (2003) J Cryst Growth 247:419

    Article  CAS  Google Scholar 

  8. Paula AJ, Parra R, Zaghete MA, Varela JA (2008) Mater Lett 62:2581

    Article  CAS  Google Scholar 

  9. Yamanouchi K, Odagawa H, Kojima T, Matsumura T (1997) Electron Lett 33:193

    Article  CAS  Google Scholar 

  10. Nakamura K, Kawamura Y (1999) Proc IEEE Ultrason Symp 2:1013

    Google Scholar 

  11. Matsumoto K, Hiruma Y, Nagata H, Takenaka T (2008) Ceram Int 34:787

    Article  CAS  Google Scholar 

  12. Makovec D, Pribošič I, Drofenik M (2008) Ceram Int 34:89

    Article  CAS  Google Scholar 

  13. Lu CH, Lo SY, Lin HC (1998) Mater Lett 34:172

    Article  CAS  Google Scholar 

  14. Muthurajan H, Kumar HH, Samuel V, Gupta UN, Ravi V (2008) Ceram Int 34:671

    Article  CAS  Google Scholar 

  15. Kim MS, Lee DS, Park EC, Jeong SJ, Song JS (2007) J Eur Ceram Soc 27:4121

    Article  CAS  Google Scholar 

  16. Mgbemere HE, Herber R-P, Schneider GA (2009) J Eur Ceram Soc 29:1729

    Article  CAS  Google Scholar 

  17. Wang R, Xie R, Sekiya T, Shimojo Y, Akimune Y, Hirosaki N, Itoh M (2002) Jpn J Appl Phys 41:7119

    Article  CAS  Google Scholar 

  18. Ahn ZS, Schulze WA (1987) J Am Ceram Soc 70:18

    Article  Google Scholar 

  19. Jaeger RE, Egerton L (1962) J Am Ceram Soc 45:209

    Article  CAS  Google Scholar 

  20. Chang Y, Yang Z, Wei L, Liu B (2006) Mater Sci Eng A 437:301

    Article  Google Scholar 

  21. Bhattacharyya K, Tyagi AK (2009) J Alloys Compd 470:580

    Article  CAS  Google Scholar 

  22. Amini MM, Mirzaee M (2009) Ceram Int 35:2367

    Article  CAS  Google Scholar 

  23. Lu C-H, Lo S-Y, Wang Y-L (2002) Mater Lett 55:121

    Article  CAS  Google Scholar 

  24. Xu J, Xue D, Yan C (2005) Mater Lett 59:2920

    Article  CAS  Google Scholar 

  25. Chaiyo N, Boonchom B, Vittayakorn N (2010) J Mater Sci 45:1443. doi:10.1007/s10853-009-4098-z

    Article  CAS  Google Scholar 

  26. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M (2008) J Anal Appl Pyrolysis 81:253

    Article  CAS  Google Scholar 

  27. Hsiao Y-J, Chang Y-H, Chang Y-S, Fang T-H, Chai Y-L, Chem G-J, Huang T-W (2007) Mater Sci Eng B 136:129

    Article  CAS  Google Scholar 

  28. Callister WD (2007) Materials science and engineering: an introduction. Wiley, New York

    Google Scholar 

  29. Pribošič I, Makovec D, Drofenik M (2005) J Eur Ceram Soc 25:2713

    Article  Google Scholar 

  30. Kakimoto K, Ito T, Ohsato H (2008) Jpn J Appl Phys 47:7669

    Article  CAS  Google Scholar 

  31. Malic B, Bernard J, Bencan A, Kosec M (2008) J Eur Ceram Soc 28:1191

    Article  CAS  Google Scholar 

  32. Chang Y, Yang Z-P, Ma D, Liu Z, Wang Z (2008) J Appl Phys 104:024109

    Article  Google Scholar 

  33. Amini MM, Sacks MD (1991) J Am Ceram Soc 74:53

    Article  CAS  Google Scholar 

  34. Kim KJ, Matijevic E (1992) J Mater Res 7:912

    Article  CAS  Google Scholar 

  35. Klug HP, Alexander LE (1974) X-ray diffraction procedure of polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  36. Lanfredi S, Dessemond L, Rodrigue ACM (2000) J Eur Ceram Soc 20:983

    Article  CAS  Google Scholar 

  37. de Andrade JS, Pinheiro AG, Vasconcelos IF et al (1999) J Phys Condens Matter 11:4451

    Article  Google Scholar 

  38. Böke HA, Akkurt S, Özdemir S, Göktürk EH, Saltik ENC (2004) Mater Lett 58:723

    Article  Google Scholar 

  39. Terashi Y, Purwanto A, Wang WN, Iskandar F, Okuyama K (2008) J Eur Ceram Soc 28:2573

    Article  CAS  Google Scholar 

  40. Wongmaneerung R, Chaisan W, Khamman O, Yimnirun R, Ananta S (2008) Ceram Int 34:813

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Thailand Research Fund (TRF), Thailand Graduate Institute of Science and Technology (TGIST), and the National Nanotechnology Center (NANOTEC) NSTDA, Ministry of Science and Technology, Thailand, through its “Center of Excellence Network” Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naratip Vittayakorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaiyo, N., Ruangphanit, A., Muanghlua, R. et al. Synthesis of potassium niobate (KNbO3) nano-powder by a modified solid-state reaction. J Mater Sci 46, 1585–1590 (2011). https://doi.org/10.1007/s10853-010-4967-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4967-5

Keywords

Navigation