Skip to main content
Log in

Second Kind Chebyshev Polynomials for Solving Space Fractional Advection–Dispersion Equation Using Collocation Method

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Fractional space derivatives are studied for modeling anomalous diffusion or dispersion, where a particle plume spreads at a rate inconsistent with the classical Brownian motion model. In this paper, we discuss numerical technique for solving space fractional advection–dispersion equation (FADE) where \(1<\alpha \leq 2\) and \(0<\beta \leq 1\). We implement a numerical technique for solving FADE called Chebyshev collocation method. We utilized fractional derivatives in the Caputo sense. The properties of shifted Chebyshev polynomials of second kind (SCPSK) are used to reduce FADE to a system of differential equations (ODEs), which is solved by finite difference method (FDM), then we use an iteration scheme to solve the system of equations. Specially, we are focused on error analysis and convergence analysis of the proposed method. The validation of the present scheme is tested through examples and compare with existing method and exact solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Boyd JP (2001) Chebyshev and Fourier spectral methods. Courier Corporation, Ann Arbor

    MATH  Google Scholar 

  • Canuto C, Hussaini MY, Quarteroni AM, Thomas A Jr (2012) Spectral methods in fluid dynamics. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Chechkin AV, Gonchar VY, Klafter J, Metzler R, Tanatarov LV (2004) Lévy flights in a steep potential well. J Stat Phys 115(5):1505–1535

    Article  MATH  Google Scholar 

  • Das S (2008) Functional calculus for system identification and controls. Springer, New York

    MATH  Google Scholar 

  • Diethelm K (1997) An algorithm for the numerical solution of differential equations of fractional order. Electron Trans Numer Anal 5(1):1–6

    MathSciNet  MATH  Google Scholar 

  • Diethelm K, Ford NJ, Freed AD, Luchko YU (2005) Algorithms for the fractional calculus: a selection of numerical methods. Comput Methods Appl Mech Eng 194(6):743–773

    Article  MathSciNet  MATH  Google Scholar 

  • Ervin VJ, Roop JP (2007) Variational solution of fractional advection–dispersion equations on bounded domains in \({\mathbb{R}}^{d}\). Numer Methods Partial Differ Equ 23(2):256–281

    Article  MATH  MathSciNet  Google Scholar 

  • Hashim I, Abdulaziz O, Momani S (2009) Homotopy analysis method for fractional IVPs. Commun Nonlinear Sci Numer Simul 14(3):674–84

    Article  MathSciNet  MATH  Google Scholar 

  • He JH (1998) Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput Methods Appl Mech Eng 167(1–2):57–68

    Article  MathSciNet  MATH  Google Scholar 

  • Jafari H, Daftardar-Gejji V (2006) Solving linear and nonlinear fractional diffusion and wave equations by ADM. Appl Math Comput 180(2):488–497

    MathSciNet  MATH  Google Scholar 

  • Jiang W, Lin Y (2010) Approximate solution of the fractional advection–dispersion equation. Comput Phys Commun 181(3):557–561

    Article  MathSciNet  MATH  Google Scholar 

  • Khader MM (2012a) Introducing an efficient modification of the variational iteration method by using Chebyshev polynomials. Appl Appl Math Int J 7(1):283–299

    MathSciNet  MATH  Google Scholar 

  • Khader MM (2012b) Introducing an efficient modification of the Homotopy perturbation method by using Chebyshev polynomials. Arab J Math Sci 18(1):61–71

    MathSciNet  MATH  Google Scholar 

  • Khader MM, Sweilam NH (2014) Approximate solutions for the fractional advection–dispersion equation using Legendre pseudo-spectral method. Comput Appl Math 33(3):739–750

    Article  MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, San Diego. https://doi.org/10.1016/S0304-0208(06)80001-0

  • Langlands TAM, Henry BI, Wearne SL (2009) Fractional cable equation models for anomalous electro-diffusion in nerve cells, infinite domain solutions. J Math Biol 59(6):761–808

    Article  MathSciNet  MATH  Google Scholar 

  • Liu F, Anh V, Turner I (2004) Numerical solution of the space fractional Fokker–Planck equation. J Comput Appl Math 166(1):209–219

    Article  MathSciNet  MATH  Google Scholar 

  • Liu F, Yang Q, Turner I (2011) Stability and convergence of two new implicit numerical methods for the fractional cable equation. J Comput Nonlinear Dyn 6(1):01109

    Google Scholar 

  • Liu J, Li X, Wu L (2016) An operational matrix of fractional differentiation of the second kind of Chebyshev polynomial for solving multiterm variable order fractional differential equation. Math Probl Eng. https://doi.org/10.1155/2016/7126080

  • Mason JC (1993) Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms. J Comput Appl Math 49(1–3):169–78

    Article  MathSciNet  MATH  Google Scholar 

  • Mason JC, Handscomb DC (2003) Chebyshev polynomials. Chapman and Hall, New York

    MATH  Google Scholar 

  • Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  • Momani S, Odibat Z (2008) Numerical solutions of the space-time fractional advection–dispersion equation. Numer Methods Partial Differ Equ 24(6):1416–1429

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  • Quintana-Murillo J, Yuste SB (2011) An explicit numerical method for the fractional cable equation. Int J Differ Equ. https://doi.org/10.1155/2011/231920

  • Rall W (1977) Core conductor theory and cable properties of neurons. In: Poeter R (ed) Handbook of physiology: the nervous system. American Physiological Society, Bethesda, pp 39–97

    Google Scholar 

  • Smith GD (1965) Numerical solution of partial differential equations. Oxford University Press, Oxford

    Google Scholar 

  • Sokolov IM, Klafter J, Blumen A (2002) Fractional kinetics. Phys Today 55:48–54

    Article  Google Scholar 

  • Su L, Wang W, Xu Q (2010) Finite difference methods for fractional dispersion equations. Appl Math Comput 216(11):3329–3334

    MathSciNet  MATH  Google Scholar 

  • Sweilam NH, Khader MM (2010) A Chebyshev pseudo-spectral method for Solving fractional integro-differential equations. ANZIAM J 51:464–475

    Article  MathSciNet  MATH  Google Scholar 

  • Sweilam NH, Khader MM, Al-Bar RF (2008) Homotopy perturbation method for linear and nonlinear system of fractional integro-differential equations. Int J Compt Math Numer Simul 1(1):73–87

    MATH  Google Scholar 

  • Sweilam NH, Khader MM, Nagy AM (2011) Numerical solution of two-sided space-fractional wave equation using finite difference method. J Compt Appl Math 235(8):2832–2841

    Article  MathSciNet  MATH  Google Scholar 

  • Sweilam NH, Khader MM, Mahdy AMS (2012a) Numerical studies for fractional-order Logistic differential equation with two different delays. J Appl Math. https://doi.org/10.1155/2012/764894.

  • Sweilam NH, Khader MM, Adel M (2012b) On the stability analysis of weighted average finite difference methods for fractional wave equation. Fract Differ Calc 2(1):17–29

    Article  MathSciNet  MATH  Google Scholar 

  • Sweilam NH, Nagy AM, El-Sayed AA (2015) Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation. Chaos Solitons Fractals 73:141–147

    Article  MathSciNet  MATH  Google Scholar 

  • Yu Q, Liu F, Anh V, Turner I (2008) Solving linear and non-linear space–time fractional reaction–diffusion equations by the Adomian decomposition method. Int J Numer Methods Eng 74(1):138–158

    Article  MathSciNet  MATH  Google Scholar 

  • Yuste SB, Acedo L (2005) An explicit finite difference method and a New von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer Anal 42(5):1862–1874. https://doi.org/10.1137/030602666

    Article  MathSciNet  MATH  Google Scholar 

  • Zhuang P, Liu F (2006) Implicit difference approximation for the time fractional diffusion equation. J Appl Math Comput 22(3):87–99. https://doi.org/10.1007/BF02832039

    Article  MathSciNet  MATH  Google Scholar 

  • Zhuang P, Liu F, Anh V, Turner I (2008) New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J Numer Anal 46(2):1079–1095. https://doi.org/10.1137/060673114

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the Department of Applied Mathematics and Humanities, S.V. National Institute of Technology, Surat-395007, India, for providing senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Saw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saw, V., Kumar, S. Second Kind Chebyshev Polynomials for Solving Space Fractional Advection–Dispersion Equation Using Collocation Method. Iran J Sci Technol Trans Sci 43, 1027–1037 (2019). https://doi.org/10.1007/s40995-018-0480-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-018-0480-5

Keywords

Navigation