Skip to main content
Log in

Assessment of the Effect of Mg Addition on the Solidification Behavior, Tensile and Impact Properties of Al–Si–Cu Cast Alloys

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the influence of different amounts of Mg on the microstructures of experimental and industrial 319 alloys. Thermal analysis was carried out for the various alloy compositions to determine the reactions corresponding to the formation of various phases. These phases were identified by examining the corresponding microstructures of the as-cast alloys. The results indicated that the addition of Mg leads to the segregation of the copper phase, resulting in the formation of the block-like form of the CuAl2 phase rather than its finer eutectic-like form. This makes it more difficult to dissolve the CuAl2 phase during solution heat treatment. It was also observed that the degree of modification achieved in the microstructures of the 319 alloys, irrespective of the alloy source, is greatly enhanced at 0.6 wt% Mg content. Addition of Mg also leads to the precipitation of the Al5Mg8Cu2Si6 phase, which normally precipitates after the CuAl2 phase. However, when the Mg level exceeds 0.4 wt%, the precipitation of the Al5Mg8Cu2Si6 phase also takes place in another reaction, before the precipitation of the CuAl2 phase. The morphology of the Al5Mg8Cu2Si6 phase in this case is script-like rather than the irregular-shaped particles normally observed. Tensile and impact properties of bars aged at different temperatures/times were reported as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26

Similar content being viewed by others

References

  1. F.H. Samuel, P. Ouellet, A.M. Samuel, H.W. Doty, Effect of Mg and Sr Additions on the formation of intermetallics in Al-6 Wt Pct Si–3.5 Wt Pct Cu-(0.45) to (0.8) Wt Pct Fe 319–Type Alloys. Metall. Mater. Trans. A. 29A, 2871–2884 (1998)

    Article  CAS  Google Scholar 

  2. N. Roy, A.M. Samuel, F.H. Samuel, Porosity formation in Al-9%Si-3%Cu alloy systems: metallographic observations. Metall. Mater. Trans. A 27, 415–429 (1996)

    Article  Google Scholar 

  3. A.M. Samuel, P. Ouellet, F.H. Samuel, H.W. Doty, Microstructural Interpretation of Thermal Analysis of Commercial 319 Al Alloy with Mg and Sr Additions. AFS Trans 105, 951–962 (1997)

    CAS  Google Scholar 

  4. J. Barresi, M.J. Kerr, H. Wang, M.J. Couper, Effect of magnesium, iron and cooling rate on mechanical properties of Al–7Si–Mg foundry alloys. AFS Trans. 117, 563–570 (2000)

    Google Scholar 

  5. C.H. Caceres, C.J. Davidson, J.R. Griffiths, Q.G. Wang, The effect of Mg on the microstructure and mechanical behavior of Al–Si–Mg casting alloys. Metall. Mater. Trans. A 30A, 2611–2618 (1999). https://doi.org/10.1007/s11661-999-0301-8

    Article  CAS  Google Scholar 

  6. Q.G. Wang, Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metall. Mater. Trans. A 34A, 2887–2899 (2003). https://doi.org/10.1007/s11661-003-0189-7

    Article  CAS  Google Scholar 

  7. Z. Ma, A.M. Samuel, F.H. Samuel, H.W. Doty, Effect of Fe content and cooling rate on the impact toughness of cast 319 and 356 aluminum alloys. AFS Trans. 100, 657–666 (1992)

    Google Scholar 

  8. A.M. Samuel, F.H. Samuel, Porosity factor in quality aluminum castings. AFS Trans 100, 657–666 (1992)

    CAS  Google Scholar 

  9. O. Elsebaie, F.H. Samuel, S.A. Alkahtani, H.W. Doty, Influence of metallurgical parameters on the impact toughness of near eutectic Al–Si alloys. Int. J. Metalcast. 102, 76–288 (2016). https://doi.org/10.1007/s40962-016-0039-1

    Article  Google Scholar 

  10. M.B. Durdjevic, B. Duric, A. Mitrasinoniv, J.H. Sokolowski, Modeling of casting processes parameters for the 3xx series of aluminum alloys using the silicon equivalency algorithm. Assoc. Metall. Eng. Serbia Mont. 9, 91–106 (2003)

    Google Scholar 

  11. J.A. Taylor, D.H. StJohn, L.H. Zheng, G.A. Edwards, J. Barresi, M.J. Couper, Solution treatment effects in Al–Si–Mg casting alloys: part 1—intermetallic phases. Aluminium Trans. 45, 95–110 (2001). https://doi.org/10.1080/13640461.2000.11819379

    Article  Google Scholar 

  12. M. Kasprzak, W. Kasprzak, W.T. Kierkus, J.H. Sokolowski, Applications of High Frequency Induction Heating for the Metallurgical Simulation and Thermal Analysis of Industrial Light Metals Casting Processes, in Proceedings of Sessions & Symposia sponsored by the Extraction & Processing Division of TMS (The Minerals, Metals & Materials Society), 2002 TMS Annual Meeting, Seattle, Washington (USA), February 17–21, 2002, pp. 619–630

  13. W. Bonfield, B.K. Dutta, Precipitation hardening in an Al–Cu–Si–Mg alloy at 130 to 220 °C. J. Mater. Sci. 11, 1661–1666 (1976)

    Article  CAS  Google Scholar 

  14. D. Yang, Role of Magnesium Addition on the Occurrence of Incipient Melting in Experimental and Commercial Al-Si-Cu Alloys and its Influence on the Alloy Microstructure and Tensile Properties. Master’s Thesis, Université du Québec à Chicoutimi, Chicoutimi, Canada, 2006, pp. 57–116

  15. J. Gauthier, P.R. Louchez, F.H. Samuel, Heat treatment of 319.2 aluminium automotive alloy: part 1, solution heat treatment. Cast Metals 8, 91–114 (1994). https://doi.org/10.1080/09534962.1995.11819197

    Article  Google Scholar 

  16. J. Gauthier, P.R. Louchez, and F.H. Samuel, Heat treatment of 319.2 aluminium automotive alloy: part 2, aging behavior. Cast Metals 8, 107–114 (1995). https://doi.org/10.1080/09534962.1995.11819198

  17. S. Shivkumar, C. Keller, D. Apelian, Aging behavior in cast Al–Si–Mg alloys. AFS Trans 98, 905–911 (1990)

    CAS  Google Scholar 

  18. F.H. Samuel, Incipient melting of Al5Mg8Si6Cu2 and CuAl2 intermetallics in unmodified and strontium-modified Al–Si–Cu–Mg (319) alloys during solution heat treatment. J. Mater. Sci. 33, 2283–2297 (1998). https://doi.org/10.1023/A:1004383203476

    Article  CAS  Google Scholar 

  19. M. Tash, F.H. Samuel, F. Mucciardi, H.W. Doty, Effect of metallurgical parameters on the hardness and microstructural characterization of as-cast and heat-treated 356 and 319 aluminum alloys. Mater. Sci. Eng. A 443, 185–201 (2007). https://doi.org/10.1016/j.msea.2006.08.054

    Article  CAS  Google Scholar 

  20. E. Rincon, H.F. Lopez, M.M. Cisneros, H. Mancha, Temperature effects on the tensile properties of cast and heat treated aluminum alloy A319. Mater. Sci. Eng., A 519, 128–140 (2009)

    Article  Google Scholar 

  21. J. Hernandez-Sandoval, M.H. Abdelaziz, E.A. Elsharkawi, A.M. Samuel, F.H. Samuel, Change of tensile properties with aging time and temperature in Al–Si–Cu–Mg 354 cast alloys with/without minor addition of Ni and/or Zr. Adv. Mater. Sci. Eng. 2021 (2021)

  22. M. Shayan, B. Eghbali, B. Niroumand, Synthesis and characterization of AA2024-SiO2 nanocomposites through the vortex method. Inter. Metalcast. 15, 1427–1440 (2021). https://doi.org/10.1007/s40962-021-00574-y

    Article  CAS  Google Scholar 

  23. Ç. Bolat, İC. Akgün, A. Gökşenli, Effect of aging heat treatment on compressive characteristics of bimodal aluminum syntactic foams produced by cold chamber die casting. Int. J. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00629-0

    Article  Google Scholar 

  24. M. Salarvand, S.M.A. Boutorabi, M. Pourgharibshahi, M. Tamizifar, Effect of cooling rate on the microstructure and mechanical properties of high-zinc AA 5182 Aluminum wrought alloy cast by the ablation green sand mold casting process. Inter. Metalcast. 15, 1464–1475 (2021)

  25. L. Bäckerud, G. Chai, J. Tamminen, Solidification Characteristics of Aluminum Alloys, vol. 2: Foundry Alloys (AFS/Skanaluminium, Des Plaines, IL, 1990), p. 71–84

  26. A.M.A. Mohamed, F.H. Samuel, A Review on the Heat Treatment of Al-Si-Cu/Mg Casting Alloys, in Heat Treatment: Conventional and Novel Applications (InTech publications, 2012), p. 229

  27. M.A. Moustafa, C. Lepage, F.H. Samuel, H.W. Doty, Metallographic observations on phase precipitation in strontium-modified Al-11.7% si alloys: role of alloying elements. Int. J. Cast Met. Res. 15, 609–626 (2003). https://doi.org/10.1080/13640461.2003.11819547

    Article  CAS  Google Scholar 

  28. M.F. Ibrahim, Effects of magnesium content and aging conditions on the impact toughness of 319-type Al–Si–Cu–Mg alloys. Master’s Thesis (Université du Québec à Chicoutimi, Chicoutimi, Canada, 2010) p. 105–161

  29. F.J. Tavitas-Medrano, H.W. Doty, S. Valtierra, F.H. Samuel, On the enhancement of the impact toughness of A319 alloys: role of Mg content and melt treatment. Int. J. Metalcast. 11, 536–551 (2017). https://doi.org/10.1007/s40962-016-0098-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Samuel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, A.M.A., Ibrahim, M.F., Samuel, E. et al. Assessment of the Effect of Mg Addition on the Solidification Behavior, Tensile and Impact Properties of Al–Si–Cu Cast Alloys. Inter Metalcast 17, 82–108 (2023). https://doi.org/10.1007/s40962-022-00786-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00786-w

Keywords

Navigation