Skip to main content
Log in

Cooling-Assisted Ultrasonic Grain Refining of Aluminum E380 Die Casting Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Die cast alloys have to be poured at temperatures much higher than their liquidus in order to make the alloys castable. Pouring at a high temperature reduces the formation of dendrites in the shot sleeve which tend to choke the flow at the in-gate but causes increased damage to the shot tooling and dies. Forming globular grains in the shot sleeve is an effective way of breaking the limit of fluidity on reducing the pouring temperature in order to increase die life and to improve the integrity of die casting products. This study investigated the feasibility of producing globular grains in a shot sleeve using a water-cooled ultrasound trough for feeding molten metal into the shot sleeve. Globular grains were obtained using this unique trough. The temperature window within which globular grains can be produced for E380 alloy was determined. Without using the WCUST, the grains in the shot sleeve were fully dendritic and the grain size was about 300 µm. When the molten metal was poured over the WCUST, small globular grains were obtained for the entire pouring temperature window, from 610 °C (1130 °F) to 700 °C (1292 °F), tested in this study. Analysis was made on the conditions for obtaining globular grains. The analysis seems in agreement with experimental results. In addition to producing globular grains for die casting applications, the water-cooled ultrasound trough may be suitable for grain refinement of other gravity casting processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Q. Han, C. Vian, J. Good, Application of refractory metals to facilitate hot chamber aluminum die casting. Int. J. Metalcast. 15, 411–416 (2021). https://doi.org/10.1007/s40962-020-00482-7

    Article  CAS  Google Scholar 

  2. J. Zhang, Q. Han, Microstructural features related to the choking of flow during HPDC. NADCA Trans. 2019, T19-013 (2019)

    Google Scholar 

  3. Q. Han, J. Zhang, Fluidity of alloys under high-pressure die casting conditions: flow-choking mechanisms. Metall. Mater. Trans. B 54B, 1795–1804 (2020)

    Article  Google Scholar 

  4. Y. Chu, P. Cheng, R. Shivpuri, A study of erosive wear in die casting dies: surface treatment and coatings. NADCA Trans. 1993, 361–371 (1993)

    Google Scholar 

  5. Q. Han, Mechanism of die soldering during aluminum die casting. China Foundry 12, 136–143 (2015)

    Google Scholar 

  6. J. Wallace, D. Schwam, Y. Zhu, S. Birceanu, Soldering characteristics of die materials and effect on cooling link placement on die life. NADCA Trans. 2002, T02-041 (2002)

    Google Scholar 

  7. S. Shankar, D. Apelian, Die soldering: mechanism of the interface reaction between molten aluminum alloy and tool steel. Metall. Mater. Trans. B. 33B, 465–476 (2002)

    Article  CAS  Google Scholar 

  8. Q. Han, S. Viswanathan, Analysis of the mechanism of die soldering in aluminum die casting. Metall. Mater. Trans. A 34A, 1–146 (2003)

    Google Scholar 

  9. J. Moore, S. Carrera, J. Lin, O. Salas, B. Mishra, G. Mustoe, P. Ried, The development of surface engineered coating systems for aluminum pressure die casting dies: an evaluation of six commercial coatings. NADCA Trans. 2003, T03-025 (2003)

    Google Scholar 

  10. Q. Han, I. McAdams, H. Zhu, M. Wang, J. Menard, W. Xu, Dissolution of H13 steel in molten aluminum. NADCA Trans. 2015, 15 (2015)

    Google Scholar 

  11. M.C. Flemings, R.G. Riek, K.P. Young, Rheocasting. Mater. Sci. Eng. 25, 103–117 (1976)

    Article  CAS  Google Scholar 

  12. D.H. Kirkwood, Semisolid metal processing. Int. Mater. Rev. 39, 173–189 (1994)

    Article  CAS  Google Scholar 

  13. Q. Han, S. Viswanathan, The use of thermodynamic simulation for the selection of hypoeutectic aluminum-silicon alloys for semi-solid metal processing. Mater. Sci. Eng. A 364, 48–54 (2004)

    Article  Google Scholar 

  14. D. Sui, Q. Han, Effects of different parameters on porosity defects between the horizontal and vertical shot sleeve processes. Int. J. Metalcast. 13, 417–425 (2019). https://doi.org/10.1007/s40962-018-0267-7

    Article  CAS  Google Scholar 

  15. R. Martinez, A. Figueredo, J.A. Yurko, M.C. Flemings, Efficient formation of structures suitable for semi-solid forming. NADCA Trans. 2001, 47–54 (2001)

    Google Scholar 

  16. J.A. Yurko, R.A. Martinez, M.C. Flemings, SSRTM, the spherical growth route to semi-solid forming, in Eighth International Conference on Semi-Solid Processing of Alloys and Composites (Limassol, Cyprus, 2004).

  17. J. Wannasin, R.A. Martinez, M.C. Flemings, Grain refinement of an aluminum alloy by introducing gas bubbles during solidification. Scr. Mater. 55, 115–118 (2005)

    Article  Google Scholar 

  18. Q.Y. Pan, S. Wiesner, D. Apelian, Application of the continuous rheoconversion process (CRP) to low temperature HPDC-part I: microstructure. Solid State Phenom. 116–117, 402–405 (2006)

    Article  Google Scholar 

  19. J.L. Jorstad, SLC, the low-cost alternative for SSM processing, NADCA Transactions, Paper T02-052 (2002)

  20. Q. Han, X. Jian, H. Hu, T.T. Meek, Method and apparatus for semi-solid materials processing, US Patent No. 7,216,690 (2007)

  21. M.A. Abdelgnei, M.Z. Omar, M.J. Ghazali et al., Microstructure evaluation and mechanical properties of thixoformed Ai–5.7Si–2Cu–0.3Mg aluminum alloys. Int. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00610-x

    Article  Google Scholar 

  22. M.M. Shehata, S. El-Hadad, M.E. Moussa et al., Optimizing the pouring temperature for semisolid casting of a hypereutectic Al–Si alloy using the cooling slope plate method. Int. Metalcast. 15, 488–499 (2021). https://doi.org/10.1007/s40962-020-00465-8

    Article  CAS  Google Scholar 

  23. M.M. Shehata, S. El-Hadad, M.E. Moussa et al., The combined effect of cooling slope plate casting and mold vibration on microstructure, hardness and wear behavior of Al–Si alloy (A390). Int. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00497-0

    Article  Google Scholar 

  24. B. Zhou, S. Lu, K. Xu et al., Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling. Int. Metalcast. 14, 396–408 (2020). https://doi.org/10.1007/s40962-019-00357-6

    Article  CAS  Google Scholar 

  25. K. Prapasajchavet, Y. Harada, S. Kumai, Microstructure analysis of Al–5.5at%Mg alloy semi-solid slurry. Int. Metalcast. 11, 123 (2017). https://doi.org/10.1007/s40962-016-0084-9

    Article  Google Scholar 

  26. G. Eisaabadi, A. Nouri, Effect of Sr on the microstructure of electromagnetically stirred semi-solid hypoeutectic Al–Si alloys. Int. Metalcast. 12, 292–297 (2018). https://doi.org/10.1007/s40962-017-0161-8

    Article  CAS  Google Scholar 

  27. P. Ashtari, G. Birsan, A. Khalaf et al., Controlled Diffusion Solidification of 2024, 6082 and 7075 Al Alloys via Tilt-Pour Casting Process. Inter Metalcast 5, 43–64 (2011). https://doi.org/10.1007/BF03355471

    Article  CAS  Google Scholar 

  28. O. Bustos, S. Ordoñez, R. Colás, Rheological and microstructural study of A356 alloy solidified under magnetic stirring. Int. Metalcast. 7, 29–37 (2013). https://doi.org/10.1007/BF03355542

    Article  CAS  Google Scholar 

  29. I. Dumanić, S. Jozić, D. Bajić et al., Optimization of semi-solid high-pressure die casting process by computer simulation, Taguchi method and grey relational analysis. Int. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00422-5

    Article  Google Scholar 

  30. G.K. Sigworth, R.J. Donahue, The metallurgy of aluminum alloys for structural high-pressure die casting castings. Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00535-x

    Article  Google Scholar 

  31. O.V. Abramov, High-Intensity Ultrasonics (Gordon and Breach Science Publishers, New York, 1998)

    Google Scholar 

  32. G.I. Eskin, Ultrasonic Treatment of Light Alloy Melts (Gordon and Breach Science Publishers, New York, 1998)

    Book  Google Scholar 

  33. X. Jian, H. Xu, T.T. Meek, Q. Han, Effect of power ultrasound on solidification of aluminum A356 alloy. Mater. Lett. 59, 190–193 (2005)

    Article  CAS  Google Scholar 

  34. Q. Han, Ultrasonic processing of materials. Metall. Mater. Trans. B 46B, 1603–1614 (2015)

    Article  Google Scholar 

  35. X. Jian, T.T. Meek, Q. Han, Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration. Scr. Mater. 54, 893–896 (2006)

    Article  CAS  Google Scholar 

  36. J.D. Hunt, K.A. Jackson, Nucleation of solid in an undercooled liquid by cavitation. J. Appl. Phys. 37, 254–257 (1966)

    Article  CAS  Google Scholar 

  37. M. Rakita, Q. Han, Influence of pressure field in melts on the primary nucleation in solidification processing. Metall. Mater. Trans. B 48B, 2232–2244 (2017)

    Article  Google Scholar 

  38. Q. Han, L. Shao, C. Xu, Ultrasonic grain refining, U.S. Patent No. 9,481,031 (Nov. 1, 2016).

  39. M. Powell, K. Manchiraju, Q. Han, Ultrasonic grain refining of continuous cast aluminum: microstructure and properties. Light Metals 2016, 737–740 (2016)

    Google Scholar 

  40. M. Easton, D. StJohn, Grain refinement of aluminum alloys: part I. The nucleant and solute paradigms—a review of the literature. Metall. Mater. Trans. A 30, 1613–1623 (1999)

    Article  Google Scholar 

  41. G.K. Sigworth, T.A. Kuhn, Grain refinement of aluminum casting alloys. Int. J. Metalcast. 1, 31–40 (2007). https://doi.org/10.1007/BF03355416

    Article  CAS  Google Scholar 

  42. K.A. Jackson, J.D. Hunt, D.R. Uhlmann, T.P. Seward III., On the origin of equiaxed zone in castings. Trans. Metall. Soc. AIME 236, 149–158 (1966)

    CAS  Google Scholar 

  43. A. Ohno, T. Motegi, H. Soda, Origin of the equiaxed crystals in castings. Trans. ISIJ 11, 18–26 (1971)

    Article  CAS  Google Scholar 

  44. D.A. Granger, Microstructure control in ingots of aluminum alloys with an emphasis on grain refinement, in Light Metals 1998. ed. by B. Welch (TMS (The Minerals, Metals, & Materials Society), Warrendale, 1998), pp. 941–952

    Google Scholar 

  45. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Clarendon Press, Oxford, 1959)

    Google Scholar 

  46. R.C. Weast (ed.), CRC Handbook of Chemistry and Physicas, 70th edn. (CRC Press, Boca Raton, 1989)

    Google Scholar 

  47. T.Z. Kattamis, J.C. Coughlin, M.C. Flemings, Influence of coarsening on dendrite arm spacing of aluminium–copper alloys. Trans. AIME 239, 1504–1511 (1967)

    CAS  Google Scholar 

  48. J.J. Reeves, T.Z. Kattamis, A model for isothermal dendritic coarsening. Scr. Metall. 5, 223–229 (1971)

    Article  CAS  Google Scholar 

  49. K.H. Chen, T.Z. Kattamis, Role of dendritic coarsening and coalescence in the establishment of cast microstructure. Z. Metallkd. 61, 475–479 (1970)

    Google Scholar 

  50. Q. Han, H. Hu, X. Zhong, Models for the isothermal coarsening of secondary dendrite arms in multicomponent alloys. Metall. Mater. Trans. B 28B, 1185–1187 (1997)

    Article  CAS  Google Scholar 

  51. Q. Han, A. Hellawell, Primary particle melting rates and equiaxed grain nucleation. Metall. Mater. Trans. B 28B, 169–173 (1997)

    Article  CAS  Google Scholar 

  52. X. Wan, Q. Han, J.D. Hunt, A diffusion solution for the melting/dissolution of a solid at constant temperature and its use for measuring the diffusion coefficient in liquids. Metall. Mater. Trans. A 29A, 751–755 (1998)

    Article  CAS  Google Scholar 

  53. I. Maxwell, A. Hellawell, A simple model for grain refinement during solidification. Acta Metall. 3, 229–237 (1975)

    Article  Google Scholar 

  54. G. Chai, L. Bäckerud, L. Arnberg, Relationship between grain size and coherency parameters in aluminum alloys. Mater. Sci. Technol. 11, 1099–1103 (1995)

    Article  CAS  Google Scholar 

  55. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristow, Modeling of inoculation of metallic melts: application to grain refinement of aluminum by Al-Ti-B. Acta Mater. 48, 2823–2835 (2000)

    Article  CAS  Google Scholar 

  56. M.C. Flemings, Fluidity of metals—techniques for producing ultra-thin section castings. Britain Foundry 57, 312–325 (1964)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by Fiat Chrysler Automobiles (FCA) under the Purdue-FCA Partnership Program. Dr. Y. Chen thanks Purdue University for providing a research facility, while he was a visiting scholar at the School of Engineering Technology at Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vian, C., Kibbey, C., Chen, Y. et al. Cooling-Assisted Ultrasonic Grain Refining of Aluminum E380 Die Casting Alloy. Inter Metalcast 16, 842–852 (2022). https://doi.org/10.1007/s40962-021-00647-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00647-y

Keywords

Navigation