Skip to main content
Log in

Biocontrol of soil borne diseases by plant growth promoting rhizobacteria

  • Review
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Biological control has received increasing interest in recent decades as one of the alternatives to chemical pesticides in the field of plant disease control, especially after the increased awareness of the dangers of pesticides to the environment in general and human health in particular, and the emergence of resistance to pesticides in some causes. Biological control is defined as any conditions or procedures in which a particular organism or substances produced from a living organism are used to reduce infection with a particular pathogen. Plant growth promoting rhizobacteria (PGPR) are able to stimulate growth and resistance against plant diseases when they are able to have a positive effect on the plant health, and then demonstrate good competitive qualities and capabilities over existing rhizosphere communities. PGPR affects plant growth improvement by fixing atmospheric nitrogen, siderophore production dissolving insoluble phosphates, and releasing hormones. In this review, we tried to focus on the potential effects of PGPR as an effective and safe technique for plant disease resistance. PGPR play a major role in plant disease resistance through induced systemic resistance (ISR), antibiotics, hydrogen cyanide, Lytic enzyme, degradation of toxins, competition for nutrients, and parasitism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included within the article and its additional files.

References

  • Abbasi S, Safaie N, Sadeghi A, Shamsbakhsh M (2019) Streptomyces strains induce resistance to Fusarium oxysporum f. sp. lycopersici race 3 in tomato through different molecular mechanisms. Front Microbiol 10:1505. https://doi.org/10.3389/fmicb.2019.01505

  • Abd Alhakim A, Hashem A, Abdelaziz AM, Attia MS (2022) Impact of plant growth promoting fungi on biochemical defense performance of tomato under Fusarial infection. Egyptian J Chem 65(13):13. https://doi.org/10.21608/EJCHEM.2022.124008.5532

  • Abdelaziz AM, Dacrory S, Hashem AH, Attia MS, Hasanin M, Fouda HM, Kamel S, ElSaied H (2021) Protective role of zinc oxide nanoparticles based hydrogel against wilt disease of pepper plant. Biocatalysis and Agricultural Biotechnology 35:102083

    Article  CAS  Google Scholar 

  • Abed JM, Farhan TA, Nawar HH, Khadhum AA (2019) Inducing systemic resistance in tomato plants against Fusarium wilt disease using salicylic acid. Indian Journal of Ecology 46:788–791

    Google Scholar 

  • Adam M, Heuer H, Hallmann J (2014) Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PLoS ONE 9:e90402

    Article  PubMed  PubMed Central  Google Scholar 

  • Admassie M, Assefa F, Alemu T (2020) Different mechanism, application, methods and properties of plant growth promoting rhizosphere bacteria. Applied Microbiology: Open Access 6:177

    Google Scholar 

  • Aguilar-Marcelino L, Mendoza-de-Gives P, Al-Ani LKT, López-Arellano ME, Gómez-Rodríguez O, Villar-Luna E, Reyes-Guerrero DE (2020): Using molecular techniques applied to beneficial microorganisms as biotechnological tools for controlling agricultural plant pathogens and pest, Molecular Aspects of Plant Beneficial Microbes in Agriculture. Elsevier, pp. 333–349

  • Aguk J, Karanja N, Schulte-Geldermann E, Bruns C, Kinyua Z, Parker M (2018) Control of bacterial wilt (Ralstonia solanacearum) in potato (Solanum tuberosum) using rhizobacteria and arbuscular mycorrhiza fungi. African Journal of Food, Agriculture, Nutrition and Development 18:13371–13387

    Article  CAS  Google Scholar 

  • Aislabie J, Deslippe JR, Dymond J (2013): Soil microbes and their contribution to soil services. Ecosystem services in New Zealand–conditions and trends. Manaaki Whenua Press, Lincoln, New Zealand 1, 143–161

  • Akram W, Anjum T (2011) Quantitative changes in defense system of tomato induced by two strains of Bacillus against Fusarium wilt. Indian Journal of Fundamental and Applied Life Sciences 1:7–13

    Google Scholar 

  • Alabouvette C, Hoeper H, Lemanceau P, Steinberg C (1996) Soil suppressiveness to diseases induced by soilborne plant pathogens. Soil Biochemistry 9:371–413

    Google Scholar 

  • Al-Hazmi A, Ibrahim A, Abdul-Raziq A (1993) Distribution, frequency and population density of nematodes associated with potato in Saudi Arabia. Afro-Asian Journal of Nematology 3:107–111

    Google Scholar 

  • Ali Siddiqui I, Ehteshamul-Haque S (2001) Suppression of the root rot–root knot disease complex by Pseudomonas aeruginosa in tomato: The influence of inoculum density, nematode populations, moisture and other plant-associated bacteria. Plant and Soil 237:81–89

    Article  Google Scholar 

  • Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi Journal of Biological Sciences 20:57–61

    Article  PubMed  Google Scholar 

  • Álvarez B, Biosca EG (2017) Bacteriophage-based bacterial wilt biocontrol for an environmentally sustainable agriculture. Frontiers in Plant Science 8:1218

    Article  PubMed  PubMed Central  Google Scholar 

  • Angelopoulou D, Naska E, Paplomatas E, Tjamos S (2014) Biological control agents (BCAs) of verticillium wilt: influence of application rates and delivery method on plant protection, triggering of host defence mechanisms and rhizosphere populations of BCAs. Plant Pathology 63:1062–1069

    Article  Google Scholar 

  • Arena MP, Silvain A, Normanno G, Grieco F, Drider D, Spano G, Fiocco D (2016) Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Frontiers in Microbiology 7:464

    Article  PubMed  PubMed Central  Google Scholar 

  • Arseneault T, Goyer C, Filion M (2016) Biocontrol of potato common scab is associated with high Pseudomonas fluorescens LBUM223 populations and phenazine-1-carboxylic acid biosynthetic transcript accumulation in the potato geocaulosphere. Phytopathology 106:963–970

    Article  CAS  PubMed  Google Scholar 

  • Arthurs S, Dara SK (2019) Microbial biopesticides for invertebrate pests and their markets in the United States. Journal of Invertebrate Pathology 165:13–21

    Article  PubMed  Google Scholar 

  • Arwiyanto T (2014) Biological control of plant disease caused by bacteria. Jurnal Perlindungan Tanaman Indonesia 18:1–12

    Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied and Environmental Microbiology 62:4081–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attia MS, El-Sayyad GS, Abd Elkodous M, El-Batal AI (2020) The effective antagonistic potential of plant growth-promoting rhizobacteria against Alternaria solani-causing early blight disease in tomato plant. Scientia Horticulturae 266:109289

    Article  CAS  Google Scholar 

  • Attia MS, El-Wakil DA, Hashem AH, Abdelaziz AM (2022) Antagonistic effect of plant growth-promoting fungi against Fusarium wilt disease in tomato: In vitro and in vivo study. Appl Biochem Biotechnol 194:5100–5118

  • Bae J, Atallah Z, Jansky S, Rouse D, Stevenson W (2007) Colonization dynamics and spatial progression of Verticillium dahliae in individual stems of two potato cultivars with differing responses to potato early dying. Plant Disease 91:1137–1141

    Article  CAS  PubMed  Google Scholar 

  • Banerjee G, Gorthi S, Chattopadhyay P (2017) Beneficial effects of bio-controlling agent Bacillus cereus IB311 on the agricultural crop production and its biomass optimization through response surface methodology. Anais da Academia Brasileira de Ciências 90:2149–2159

    Article  PubMed  Google Scholar 

  • Bashan Y, De-Bashan LE (2002) Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Applied and Environmental Microbiology 68:2637–2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Khedher S, Kilani-Feki O, Dammak M, Jabnoun-Khiareddine H, Daami-Remadi M, Tounsi S (2015) Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. Comptes Rendus Biologies 338:784–792

    Article  PubMed  Google Scholar 

  • Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Science and Technology 11:557–574

    Article  Google Scholar 

  • Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology 173:170–177

    Article  CAS  PubMed  Google Scholar 

  • Bouchek-Mechiche K, Pasco C, Andrivon D, Jouan B (2000) Differences in host range, pathogenicity to potato cultivars and response to soil temperature among Streptomyces species causing common and netted scab in France. Plant Pathology 49:3–10

    Article  Google Scholar 

  • Bozbuga R, Lilley CJ, Knox JP, Urwin PE (2018) Host-specific signatures of the cell wall changes induced by the plant parasitic nematode, Meloidogyne incognita. Scientific Reports 8:1–13

    Article  CAS  Google Scholar 

  • Brar S, Sarma S, Chaabouni E (2012) Shelf-life of biofertilizers: an accord between formulations and genetics. J Biofertilizers Biopesticides 3(5):1000e109

  • Brown D, Zheng J, Zhou X (2004) Virus Vectors. pp: 717–770. Nematology: Advances and perspectives, Nematode Management and Utilization 2

  • Calvo P, Ormeño-Orrillo E, Martínez-Romero E, Zúñiga D (2010) Characterization of Bacillus isolates of potato rhizosphere from andean soils of Peru and their potential PGPR characteristics. Brazilian Journal of Microbiology 41:899–906

    Article  PubMed  PubMed Central  Google Scholar 

  • Campos H, Ortiz O (2020) The potato crop: Its agricultural, nutritional and social contribution to humankind. The Potato Crop. pp 219–247, Springer Nature. https://doi.org/10.1007/978-3-030-28683-5_7

  • Castillo BM, Dunn MF, Navarro KG, Meléndez FH, Ortiz MH, Guevara SE, Palacios GH (2016) Antifungal performance of extracellular chitinases and culture supernatants of Streptomyces galilaeus CFFSUR-B12 against Mycosphaerella fijiensis Morelet. World Journal of Microbiology and Biotechnology 32:44

    Article  PubMed  Google Scholar 

  • Chahal V, Chahal P (2003) Bacillus thuringiensis for the control of Meloidogyne incognita. Nematode Management in Plants, Chapter 14:251–257

  • Chamedjeu RR, Joel M, Viviene M, Steven R (2019) Potential use of soil bacteria associated with potato rhizosphere as bio-control agents for effective management of bacterial wilt disease. Journal of Microbiology Research 9:12–24

    Google Scholar 

  • Chatterjee A, Mayawala K, Edwards JS, Vlachos DG (2005) Time accelerated Monte Carlo simulations of biological networks using the binomial τ-leap method. Bioinformatics 21:2136–2137

    Article  CAS  PubMed  Google Scholar 

  • Chitarra GS, Breeuwer P, Nout MJ, van Aelst AC, Rombouts FM, Abee T (2003) An antifungal compound produced by Bacillus subtilis YM 10–20 inhibits germination of Penicillium roqueforti conidiospores. Journal of Applied Microbiology 94:159–166

    Article  CAS  PubMed  Google Scholar 

  • Chowdappa P, Mohan Kumar SP, Jyothi Lakshmi M, Upreti KK (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control 65:109–117

    Article  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Frontiers in Microbiology 6:780

    Article  PubMed  PubMed Central  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortés-Zavaleta O, López-Malo A, Hernández-Mendoza A, García H (2014) Antifungal activity of Lactobacilli and its relationship with 3-phenyllactic acid production. International Journal of Food Microbiology 173:30–35

    Article  PubMed  Google Scholar 

  • Czajkowski R, Perombelon MC, van Veen JA, van der Wolf JM (2011) Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pthology 60:999–1013

    Article  Google Scholar 

  • Czajkowski R, Pérombelon M, Jafra S, Lojkowska E, Potrykus M, Van Der Wolf J, Sledz W (2015) Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review. Annals of Applied Biology 166:18–38

    Article  CAS  PubMed  Google Scholar 

  • Daayf F, Adam L, Fernando W (2003) Comparative screening of bacteria for biological control of potato late blight (strain US-8), using invitro, detached-leaves, and whole-plant testing systems. Canadian Journal of Plant Pathology 25:276–284

    Article  Google Scholar 

  • Dalié D, Deschamps A, Richard-Forget F (2010) Lactic acid bacteria: Potential for control of mould growth and mycotoxins: A review. Food Control 21:370–380

    Article  Google Scholar 

  • Dayarathne MC, Mridha AU, Wang Y (2020) Diagnosis of fungal plant pathogens using conventional and molecular approaches. In: Diagnostics of Plant Diseases. IntechOpen, pp 1–20. https://doi.org/10.5772/intechopen.94980

  • De Meyer G, Höfte M (1997) Salicylic acid produced by the Rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on Bean. Phytopathology 87:588–593

    Article  PubMed  Google Scholar 

  • Diallo S, Crépin A, Barbey C, Orange N, Burini J-F, Latour X (2011) Mechanisms and recent advances in biological control mediated through the potato rhizosphere. FEMS Microbiology Ecology 75:351–364

    Article  CAS  PubMed  Google Scholar 

  • Elad Y (1996) Mechanisms involved in the biological control of Botrytis cinerea incited diseases. European Journal of Plant Pathology 102:719–732

    Article  Google Scholar 

  • El-feky N, Essa T, Elzaawely AA, El-Zahaby HM (2019) Antagonistic activity of some bioagents against root rot diseases of pepper (Capsicum annum L.). Environment, Biodiversity and Soil Security 3:215–225

    Article  Google Scholar 

  • El-Gamal NG, Shehata AN, Hamed ER, Shehata HS (2016) Improvement of lytic enzymes producing Pseudomonas fluorescens and Bacillus subtilis isolates for enhancing their biocontrol potential against root rot disease in tomato plants. Research Journal of Pharmaceutical, Biological and Chemical Sciences 7:1394–1400

    Google Scholar 

  • Ellis S, Boehm M, Coplin D (2008) OSU Extension Factsheet: Introduction to plant disease series PP401. 06 entitled “Bacterial diseases of plants”

  • Ferreira EPdB, Dusi AN, Xavier GR, Rumjanek NG (2008) Rhizosphere bacterial communities of potato cultivars evaluated through PCR-DGGE profiles. Pesquisa Agropecuária Brasileira 43:605–612

    Article  Google Scholar 

  • Fiers M, Edel-Hermann V, Chatot C, Le Hingrat Y, Alabouvette C, Steinberg C (2012) Potato soil-borne diseases. A Review. Agronomy for Sustainable Development 32:93–132

    Article  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    Article  CAS  PubMed  Google Scholar 

  • García de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Canadian Journal of Microbiology 47:404–411

    Article  PubMed  Google Scholar 

  • Gardan L (2005) Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov.

  • Geels F, Schippers B (1983) Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistence following treatment of seed potatoes. Journal of Phytopathology 108:193–206

    Article  Google Scholar 

  • Ghosh S, Kanwar P, Jha G (2017) Alterations in rice chloroplast integrity, photosynthesis and metabolome associated with pathogenesis of Rhizoctonia solani. Scientific Reports 7:41610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh R, Tarafdar A, Chobe D, Sharath Chandran U, Rani S, Sharma M (2019) Diagnostic techniques of soil borne plant diseases: recent advances and next generation evolutionary trends, Biological Forum–An International J Res Trend 11(2):1–13

  • Gillet F-X, Bournaud C, de Souza A, Júnior JD, Grossi-de-Sa MF (2017) Plant-parasitic nematodes: towards understanding molecular players in stress responses. Annals of Botany 119:775–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glandorf DC, Verheggen P, Jansen T, Jorritsma J-W, Smit E, Leeflang P, Wernars K, Thomashow LS, Laureijs E, Thomas-Oates JE (2001) Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Applied and Environmental Microbiology 67:3371–3378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel N, Paul PK (2015) Polyphenol oxidase and lysozyme mediate induction of systemic resistance in tomato, when a bioelicitor is used. Journal of Plant Protection Research 55:343–350

    Article  CAS  Google Scholar 

  • Gowtham H, Hariprasad P, Nayak SC, Niranjana S (2016) Application of rhizobacteria antagonistic to Fusarium oxysporum f. sp. lycopersici for the management of Fusarium wilt in tomato. Rhizosphere 2:72–74

    Article  Google Scholar 

  • Gravel V, Martinez C, Antoun H, Tweddell RJ (2005) Antagonist microorganisms with the ability to control Pythium damping-off of tomato seeds in rockwool. BioControl 50:771–786

    Article  Google Scholar 

  • Guo J-H, Qi H-Y, Guo Y-H, Ge H-L, Gong L-Y, Zhang L-X, Sun P-H (2004) Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control 29:66–72

    Article  Google Scholar 

  • Gupta S (2005) Evaluation of liquid and carrier based Rhizobium inoculants in chickpea. Indian Journal of Pulses Research 18:40

    Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Hadizadeh I, Peivastegan B, Hannukkala A, Van der Wolf J, Nissinen R, Pirhonen M (2019) Biological control of potato soft rot caused by Dickeya solani and the survival of bacterial antagonists under cold storage conditions. Plant Pathology 68:297–311

    Article  CAS  Google Scholar 

  • Hamed HA, Moustafa YA, Abdel-Aziz SM (2011) In vivo efficacy of lactic acid bacteria in biological control against Fusarium oxysporum for protection of tomato plant. Life Science Journal 8:462–468

    Google Scholar 

  • Hameeda B, Harini G, Rupela O, Wani S, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiological Research 163:234–242

    Article  CAS  PubMed  Google Scholar 

  • Harris K, Young IM, Gilligan CA, Otten W, Ritz K (2003) Effect of bulk density on the spatial organisation of the fungus Rhizoctonia solani in soil. FEMS Microbiology Ecology 44:45–56

    Article  CAS  PubMed  Google Scholar 

  • Hashem AH, Abdelaziz AM, Askar AA, Fouda HM, Khalil AM, Abd-Elsalam KA, Khaleil MM (2021) Bacillus megaterium-mediated synthesis of selenium nanoparticles and their antifungal activity against Rhizoctonia solani in Faba Bean Plants. Journal of Fungi 7:195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helias V (2008) Pectobacterium spp. and Dickeya spp. on potato: a new nomenclature for Erwinia spp., symptoms, epidemiology and disease prevention. Cahiers Agricultures 17:349–354

    Article  Google Scholar 

  • Hernández-León R, Rojas-Solís D, Contreras-Pérez M, Orozco-Mosqueda MdC, Macías-Rodríguez LI, Reyes-de la Cruz H, Valencia-Cantero E, Santoyo G (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biological Control 81:83–92

    Article  Google Scholar 

  • Herreros M, Sandoval H, González L, Castro J, Fresno J, Tornadijo M (2005) Antimicrobial activity and antibiotic resistance of lactic acid bacteria isolated from Armada cheese (a Spanish goats’ milk cheese). Food Microbiology 22:455–459

    Article  CAS  Google Scholar 

  • Höper H, Alabouvette C (1996) Importance of physical and chemical soil properties in the suppressiveness of soils to plant diseases. European Journal of Soil Biology 32:41–58

    Google Scholar 

  • Insunza V, Alström S, Eriksson K (2002) Root bacteria from nematicidal plants and their biocontrol potential against trichodorid nematodes in potato. Plant and Soil 241:271–278

    Article  CAS  Google Scholar 

  • Islam MR, Jeong YT, Lee YS, Song CH (2012) Isolation and identification of antifungal compounds from Bacillus subtilis C9 inhibiting the growth of plant pathogenic fungi. Mycobiology 40:59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs H, Crump DH (2003) Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes. Mycological Research 107:47–56

    Article  PubMed  Google Scholar 

  • Jafra S, Przysowa J, Czajkowski R, Michta A, Garbeva P, Van der Wolf J (2006) Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Canadian Journal of Microbiology 52:1006–1015

    Article  CAS  PubMed  Google Scholar 

  • Jagadeesh K, Kulkarni J (2003) Mechanisms of biocontrol in Rhizobacteria of tomato antagonistic to Ralstonia solanacearum EF smith causing bacterial wilt in tomato, Proceedings of the Sixth International PGPR Workshop on Plant Growth Promoting Rhizobacteria, Calicut, India, pp. 5–10

  • Jain A, Sarsaiya S, Wu Q, Lu Y, Shi J (2019) A review of plant leaf fungal diseases and its environment speciation. Bioengineered 10:409–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jambhulkar PP, Sharma M, Lakshman D, Sharma P (2015) Natural mechanisms of soil suppressiveness against diseases caused by Fusarium, Rhizoctonia, Pythium, and Phytophthora, Organic amendments and soil suppressiveness in plant disease management. Springer, pp. 95–123

  • Janahiraman V, Anandham R, Kwon SW, Sundaram S, Karthik Pandi V, Krishnamoorthy R, Kim K, Samaddar S, Sa T (2016) Control of wilt and rot pathogens of tomato by antagonistic pink pigmented facultative methylotrophic Delftia lacustris and Bacillus spp. Frontiers in Plant Science 7:1626

  • Jayaraj J, Parthasarathi T, Radhakrishnan N (2007) Characterization of a Pseudomonas fluorescens strain from tomato rhizosphere and its use for integrated management of tomato damping-off. BioControl 52:683–702

    Article  Google Scholar 

  • Jeffries P (1995) Biology and ecology of mycoparasitism. Canadian Journal of Botany 73:1284–1290

    Article  Google Scholar 

  • Jehlička J, Culka A, Mana L, Oren A (2019) Comparison of miniaturized Raman spectrometers for discrimination of carotenoids of halophilic microorganisms. Frontiers in Microbiology 10:1155

    Article  PubMed  PubMed Central  Google Scholar 

  • Jetiyanon K, Fowler WD, Kloepper JW (2003) Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Disease 87:1390–1394

    Article  PubMed  Google Scholar 

  • Jung H-K, Kim S-D (2003) Purification and characteriztion of an antifungal antibiotic from Bacillus megaterium KL 39, a biocontrol agent of red-papper Phytophtora blight disease. Han’gug Mi’saengmul Saengmyeong Gong Haghoeji 31:235–241

    CAS  Google Scholar 

  • Karlsson M, Atanasova L, Jensen DF, Zeilinger S (2017) Necrotrophic mycoparasites and their genomes. Microbiology Spectrum 5, 5.2. 08

  • Karthik C, Elangovan N, Kumar TS, Govindharaju S, Barathi S, Oves M, Arulselvi PI (2017) Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium (VI) stress. Microbiological Research 204:65–71

    Article  CAS  PubMed  Google Scholar 

  • Kastelein P, Schepel E, Mulder A, Turkensteen L, Van Vuurde J (1999) Preliminary selection of antagonists of Erwinia carotovora subsp. atroseptica (Van Hall) dye for application during green crop lifting of seed potato tubers. Potato Research 42:161–171

    Article  Google Scholar 

  • Katan J (2017) Diseases caused by soilborne pathogens: Biology, management and challenges. J Plant Pathol 99(2):305–315. https://doi.org/10.4454/jpp.v99i2.3862

  • Kavitha J, Jonathan E, Umamaheswari R (2007) Field application of Pseudomonas fluorescens, Bacillus subtilis and Trichoderma viride for the control of Meloidogyne incognita (Kofoid and White) Chitwood on sugarbeet. Journal of Biological Control 21:211–215

    Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner PJ, Haas D, Défago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2, 4-diacetylphloroglucinol. Molecular Plant-Microbe Interactions 5:4–13

    Article  CAS  Google Scholar 

  • Kempe J, Sequeira L (1983) Biological control of bacterial wilt of potatoes: attempts to induce resistance by treating tubers with bacteria. Plant Disease 67:499–503

    Article  Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology 38:423–441

    Article  CAS  PubMed  Google Scholar 

  • Khabbaz S, Zhang L, Cáceres L, Sumarah M, Wang A, Abbasi P (2015) Characterisation of antagonistic Bacillus and Pseudomonas strains for biocontrol potential and suppression of damping-off and root rot diseases. Annals of Applied Biology 166:456–471

    Article  CAS  Google Scholar 

  • Khabbaz SE, Ladhalakshmi D, Babu M, Kandan A, Ramamoorthy V, Saravanakumar D, Al-Mughrabi T, Kandasamy S (2019) Plant Growth Promoting Bacteria (PGPB)—a versatile tool for plant health management. Canadian Journal of Pesticide Pest Management 1:1–25

    Article  Google Scholar 

  • Khalil AM, Ahmed AF, Mahmoud EE, Abdelaziz AM (2015) Influence of organic farming system on microbial biomass and fungal communications of agricultural soil. African Journal of Mycology and Biotechnology 20:23–40

    Google Scholar 

  • Khan N, Martínez-Hidalgo P, Ice TA, Maymon M, Humm EA, Nejat N, Sanders ER, Kaplan D, Hirsch AM (2018) Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Frontiers in Microbiology 9:2363

    Article  PubMed  PubMed Central  Google Scholar 

  • Kipgen TL, Bora L (2017) Biochemical differentiation of Pseudomonas fluorescens of Assam soil and their utility in management of bacterial wilt of solanaceous crops. International Journal of Current Microbiology and Applied Sciences 6:2796–2806

    Article  CAS  Google Scholar 

  • Koenning S, Overstreet C, Noling J, Donald P, Becker J, Fortnum B (1999) Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. Journal of Nematology 31:587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science 10:845

    Article  PubMed  PubMed Central  Google Scholar 

  • Koike S, Subbarao K, Davis RM, Turini T (2003): Vegetable diseases caused by soilborne pathogens. UCANR Publications

  • Konappa NM, Maria M, Uzma F, Krishnamurthy S, Nayaka SC, Niranjana SR, Chowdappa S (2016) Lactic acid bacteria mediated induction of defense enzymes to enhance the resistance in tomato against Ralstonia solanacearum causing bacterial wilt. Scientia Horticulturae 207:183–192

    Article  CAS  Google Scholar 

  • Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2002) Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Canadian Journal of Microbiology 48:772–786

    Article  CAS  PubMed  Google Scholar 

  • Krueger RJ (2004) Bacterial disease resistance in plants: Molecular biology and biotechnological applications. Economic Botany 58:498–498

    Article  Google Scholar 

  • Krzyzanowska DM, Maciag T, Siwinska J, Krychowiak M, Jafra S, Czajkowski R (2019) Compatible mixture of bacterial antagonists developed to protect potato tubers from Soft Rot caused by Pectobacterium spp. and Dickeya spp. Plant Disease 103:1374–1382

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Bharti R, Ranjan T (2020) The evolutionary significance of generalist viruses with special emphasis on plant viruses and their hosts. The Open Virology J 14:22–29. https://doi.org/10.2174/1874357902014010022

  • Lamont JR, Wilkins O, Bywater-Ekegärd M, Smith DL (2017) From yogurt to yield: Potential applications of lactic acid bacteria in plant production. Soil Biology and Biochemistry 111:1–9

    Article  CAS  Google Scholar 

  • Lamsal K, Kim SW, Kim YS, Lee YS (2013) Biocontrol of late blight and plant growth promotion in tomato using rhizobacterial isolates. Journal of Microbiology and Biotechnology 23:897–904

    Article  PubMed  Google Scholar 

  • Larousse M, Rancurel C, Syska C, Palero F, Etienne C, Nesme X, Bardin M, Galiana E (2017) Tomato root microbiota and Phytophthora parasitica-associated disease. Microbiome 5:1–11

    Article  Google Scholar 

  • Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environment Microbiology 71:4577–4584

    Article  Google Scholar 

  • Leeman M, Den Ouden F, Van Pelt J, Dirkx F, Steijl H, Bakker P, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155

    Article  CAS  Google Scholar 

  • Lefeuvre P, Martin DP, Elena SF, Shepherd DN, Roumagnac P, Varsani A (2019) Evolution and ecology of plant viruses. Nature Reviews Microbiology 17:632–644

    Article  CAS  PubMed  Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annual Review of Phytopathology 24:187–209

    Article  CAS  Google Scholar 

  • Li B, Li Q, Xu Z, Zhang N, Shen Q, Zhang R (2014) Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front Microbiol 5:636. https://doi.org/10.3389/fmicb.2014.00636

  • Liu D, Anderson NA, Kinkel LL (1995) Biological control of potato scab in the field with antagonistic Streptomyces scabies. Phytopathology 85:827–831

    Article  Google Scholar 

  • Liu K, Newman M, McInroy JA, Hu C-H, Kloepper JW (2017) Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology 107:928–936

    Article  CAS  PubMed  Google Scholar 

  • Locke T (2002): Compendium of potato diseases, edited by WR STEVENSON, R. LORIA, GD FRANC & DP WEINGARTNER. viii+ 134 pp. St Paul, Minnesota: APS Press (2001). ISBN 0 89054 275 9. The Journal of Agricultural Science 138:345–348

  • López-Escudero FJ, Mercado-Blanco J (2011) Verticillium wilt of olive: A case study to implement an integrated strategy to control a soil-borne pathogen. Plant and Soil 344:1–50

    Article  Google Scholar 

  • Loria R, Bignell DR, Moll S, Huguet-Tapia JC, Joshi MV, Johnson EG, Seipke RF, Gibson DM (2008) Thaxtomin biosynthesis: The path to plant pathogenicity in the genus Streptomyces. Antonie Van Leeuwenhoek 94:3–10

    Article  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annual Review of Microbiology 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87:151–174

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud S (2007) Management of brown rot disease of potato. Arab Universities Journal of Agricultural Sciences 15:457–463

    Article  Google Scholar 

  • Manici L, Caputo F (2009) Fungal community diversity and soil health in intensive potato cropping systems of the east Po valley, northern Italy. Annals of Applied Biology 155:245–258

    Article  Google Scholar 

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology 13:614–629

    Article  PubMed  PubMed Central  Google Scholar 

  • Mansouri F, Krahulec F, Duchoslav M, Ryšánek P (2021) Newly identified host range of viruses infecting species of the genus Allium and their distribution in six habitats in the Czech Republic. Plant Pathology 70(6):1496–1507

  • Marin VR, Ferrarezi JH, Vieira G, Sass DC (2019) Recent advances in the biocontrol of Xanthomonas spp. World Journal of Microbiology and Biotechnology 35:1–11

    Article  Google Scholar 

  • Marshall K (1975) Clay mineralogy in relation to survival of soil bacteria. Annual Review of Phytopathology 13:357–373

    Article  Google Scholar 

  • Martinez C, Michaud M, Belanger R, Tweddell R (2002) Identification of soils suppressive against Helminthosporium solani, the causal agent of potato silver scurf. Soil Biology and Biochemistry 34:1861–1868

    Article  CAS  Google Scholar 

  • Martínez-Viveros O, Jorquera M, Crowley D, Gajardo G, Mora M (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition 10:293–319

    Article  Google Scholar 

  • Matei GM, Matei S, Mocanu V, Dumitru S (2017) Microbiological characterization of suppressive forest soil from Enisala. Annals of the University of Craiova-Agriculture, Montanology, Cadastre Series 46:341–347

    Google Scholar 

  • Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D, Défago G (1998) Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678–684

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M, Cook RJ, Thomashow L, Weller D, Pierson L 3rd (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Applied and Environmental Microbiology 58:2616–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Merz U, Falloon RE (2009) Powdery scab of potato—increased knowledge of pathogen biology and disease epidemiology for effective disease management. Potato Research 52:17–37

    Article  Google Scholar 

  • Messiha NA, van Bruggen AH, van Diepeningen AD, de Vos OJ, Termorshuizen AJ, Tjou-Tam-Sin N, Janse J (2007) Potato brown rot incidence and severity under different management and amendment regimes in different soil types. European Journal of Plant Pathology 119:367–381

    Article  Google Scholar 

  • Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Applied and Environmental Microbiology 62:3061–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra J, Arora NK (2018) Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Applied Soil Ecology 125:35–45

    Article  Google Scholar 

  • Montealegre JR, Reyes R, Pérez LM, Herrera R, Silva P, Besoain X (2003) Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electronic Journal of Biotechnology 6:115–127

    Article  Google Scholar 

  • Mugniéry D (2007) The canon of potato science: 15. Root-Knot Nematodes Potato Research 50:263–265

    Article  Google Scholar 

  • Nagarajkumar M, Jayaraj J, Muthukrishnan S, Bhaskaran R, Velazhahan R (2005) Detoxification of oxalic acid by pseudomonas fluorescens strain pfMDU2: Implications for the biological control of rice sheath blight caused by Rhizoctonia solani. Microbiological Research 160:291–298

    Article  CAS  PubMed  Google Scholar 

  • Nain L, Yadav R, Saxena J (2012) Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Applied Soil Ecology 59:124–135

    Article  Google Scholar 

  • Nakkeeran S, Fernando WGD, Siddiqui ZA (2006) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: Biocontrol and biofertilization. Springer, Netherlands, pp 257–296

    Chapter  Google Scholar 

  • Negi YK, Prabha D, Garg SK, Kumar J (2011) Genetic diversity among cold-tolerant fluorescent Pseudomonas isolates from Indian Himalayas and their characterization for biocontrol and plant growth-promoting activities. Journal of Plant Growth Regulation 30:128–143

    Article  CAS  Google Scholar 

  • Newman TE, Derbyshire MC (2020) The evolutionary and molecular features of broad host-range necrotrophy in plant pathogenic fungi. Front Plant Science 11:591733. https://doi.org/10.3389/fpls.2020.591733

  • Niknam G, Dhawan S (2001) Effect of seed bacterization, soil drench and bare root-dip application methods of Pseudomonas fluorescens isolate Pf1 on the suppression of Rotylenchulus reniformis infecting tomato, National Congress on Centenary of Nematology in India–Appraisal & Future Plans IARI New Delhi, Nematol Medit 31:231–237

  • Olivieri F, Maldonado S, Tonon C, Casalongue C (2004) Hydrolytic activities of Fusarium solani and Fusarium solani f. sp. eumartii associated with the infection process of potato tubers. Journal of Phytopathology 152:337–344

    Article  Google Scholar 

  • Palomares-Rius JE, Oliveira CM, Blok VC (2014) Plant parasitic nematodes of potato. In: The potato: botany, production and uses, chap 10. CABI Digital Library, pp 148–166. https://www.cabidigitallibrary.org/doi/book/10.1079/9781780642802.0000

  • Panth M, Hassler SC, Baysal-Gurel F (2020) Methods for management of soilborne diseases in crop production. Agriculture 10:16

    Article  CAS  Google Scholar 

  • Papp O, Kocsis T, Biró B, Jung T, Ganszky D, Abod É, Tirczka I, Tóthné Bogdányi F, Drexler D (2021) Co-inoculation of organic potato with fungi and bacteria at high disease severity of Rhizoctonia solani and Streptomyces spp. increases beneficial effects. Microorganisms 9:2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parke JL, Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annual Review of Phytopathology 39:225–258

    Article  CAS  PubMed  Google Scholar 

  • Parke J (1991): Root colonization by indigenous and introduced microorganisms, The rhizosphere and plant growth. Springer, pp. 33–42

  • Pérez-García A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology 22:187–193

    Article  PubMed  Google Scholar 

  • Pertot I, Alabouvette C, Hinarejos E, Franca S (2015): Mini paper the use of microbial biocontrol agents against soil-borne diseases. EIP-AGRI Focus Group Soil-borne diseas

  • Peters R, Sturz A, Carter M, Sanderson J (2004) Influence of crop rotation and conservation tillage practices on the severity of soil-borne potato diseases in temperate humid agriculture. Canadian Journal of Soil Science 84:397–402

    Article  Google Scholar 

  • Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. The Plant Cell 10:1571–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse C, Van Wees S, Ton J, Van Pelt J, Van Loon L (2002) Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biology 4:535–544

    Article  CAS  Google Scholar 

  • Principe A, Fernandez M, Torasso M, Godino A, Fischer S (2018) Effectiveness of tailocins produced by Pseudomonas fluorescens SF4c in controlling the bacterial-spot disease in tomatoes caused by Xanthomonas vesicatoria. Microbiological Research 212:94–102

    Article  PubMed  Google Scholar 

  • Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK (2016) Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Analytical Methods 8:12–24

    Article  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology 50:403–424

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2, 4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Molecular Plant-Microbe Interactions 11:144–152

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537

    Article  CAS  PubMed  Google Scholar 

  • Rai R, Srinivasamurthy R, Dash PK, Gupta P (2017) Isolation, characterization and evaluation of the biocontrol potential of Pseudomonas protegens RS-9 against Ralstonia solanacearum in tomato. Indian J Exp Biol 55:595–603

  • Rajer FU, Wu H, Xie Y, Xie S, Raza W, Tahir HAS, Gao X (2017) Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato. Microbiology 163:523–530

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection 20:1–11

    Article  CAS  Google Scholar 

  • Ramamoorthy V, Raguchander T, Samiyappan R (2002) Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent pseudomonads. European Journal of Plant Pathology 108:429–441

    Article  CAS  Google Scholar 

  • Raoul des Essarts Y, Cigna J, Quêtu-Laurent A, Caron A, Munier E, Beury-Cirou A, Hélias V, Faure D (2016) Biocontrol of the potato blackleg and soft rot diseases caused by Dickeya dianthicola. Applied and Environmental Microbiology 2:8 268–278

  • Raviv M (2005) The use of compost in growing media as suppressive agent against soil-borne diseases. International Symposium on Growing Media 779:39–50

    Google Scholar 

  • Recep K, Fikrettin S, Erkol D, Cafer E (2009) Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biological Control 50:194–198

    Article  Google Scholar 

  • Reddy B, Reddy M, Krishna K (2009) Characterization of antifungal metabolites of Pf and their effect on mycelia growth of Magnaporthe grisea and Rhizoctonia solani. Int J Pharm Technol Res 1:1490–1493

    Google Scholar 

  • Reis J, Paula A, Casarotti S, Penna A (2012) Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Engineering Reviews 4:124–140

    Article  CAS  Google Scholar 

  • Reiss A, Jørgensen LN (2017) Biological control of yellow rust of wheat (Puccinia striiformis) with Serenade®ASO (Bacillus subtilis strain QST713). Crop Protection 93:1–8

    Article  Google Scholar 

  • Reitz M, Rudolph K, Schroder I, Hoffmann-Hergarten S, Hallmann J, Sikora R (2000) Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Applied and Environmental Microbiology 66:3515–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291

    Article  Google Scholar 

  • Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil 321:305–339

    Article  CAS  Google Scholar 

  • Ross AF (1961) Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340–358

    Article  CAS  PubMed  Google Scholar 

  • Ryan AD, Kinkel LL, Schottel JL (2004) Effect of pathogen isolate, potato cultivar, and antagonist strain on potato scab severity and biological control. Biocontrol Science and Technology 14:301–311

    Article  Google Scholar 

  • Sadfi N, Cherif M, Fliss I, Boudabbous A, Antoun H (2001) Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. J Plant Pathol 83(2):101–117

  • Salisbury FB (1994) The role of plant hormones. Plant-environment interactions. Marcel Dekker, New York, pp 39–81

    Google Scholar 

  • Samaliev K, Grigorov P, Samalieva A (1998) Influence of population density of globoderma rostochiensis (Nematoda: Heteroderidae) on potato yield. Plant Science 35(3):235–238

  • Sansinenea E, Ortiz A (2011) Secondary metabolites of soil Bacillus spp. Biotechnology Letters 33:1523–1538

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar D, Thomas A, Banwarie N (2019) Antagonistic potential of lipopeptide producing Bacillus amyloliquefaciens against major vegetable pathogens. European Journal of Plant Pathology 154:319–335

    Article  CAS  Google Scholar 

  • Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, Défago G, Haas D, Keel C (2000) Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. Journal of Bacteriology 182:1215–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216:1376–1381

    Article  CAS  PubMed  Google Scholar 

  • Sekar S, Kandavel D (2010) Interaction of plant growth promoting rhizobacteria (PGPR) and endophytes with medicinal plants–new avenues for phytochemicals. J Phytology 2(7):91–100

  • Sengupta S, Banerjee AB, Bose SK (1971) Gamma-glutamyl and D- or L-peptide linkages in mycobacillin, a cyclic peptide antibiotic. The Biochemical Journal 121:839–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment 31:446–459

    Article  CAS  Google Scholar 

  • Shafique HA, Sultana V, Ehteshamul-Haque S, Athar M (2016) Management of soil-borne diseases of organic vegetables. Journal of Plant Protection Research 56:221–230

    Article  CAS  Google Scholar 

  • Shaikh S, Sayyed R (2015): Role of plant growth-promoting rhizobacteria and their formulation in biocontrol of plant diseases, Plant microbes symbiosis: Applied Facets. Springer, pp. 337–351

  • Sharga B, Lyon G (1998) Bacillus subtilis BS 107 as an antagonist of potato blackleg and soft rot bacteria. Canadian Journal of Microbiology 44:777–783

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Nowak J (1998) Enhancement of verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp. strain PsJN). Canadian Journal of Microbiology 44:528–536

    Article  CAS  Google Scholar 

  • Shrestha A, Choi K-U, Lim C-K, Hur J-H, Cho S-Y (2009) Antagonistic effect of Lactobacillus sp. strain KLF01 against plant pathogenic bacteria Ralstonia solanacearum. The Korean Journal of Pesticide Science 13:45–53

    Google Scholar 

  • Shrestha A, Kim BS, Park DH (2014) Biological control of bacterial spot disease and plant growth-promoting effects of lactic acid bacteria on pepper. Biocontrol Science and Technology 24:763–779

    Article  Google Scholar 

  • Siddiqui ZA, Akhtar MS (2009) Effect of plant growth promoting rhizobacteria, nematode parasitic fungi and root-nodule bacterium on root-knot nematodes Meloidogyne javanica and growth of chickpea. Biocontrol Science and Technology 19:511–521

    Article  Google Scholar 

  • Siddiqui Z, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: A review. Bioresource Technology 69:167–179

    Article  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biology and Biochemistry 35:1615–1623

    Article  CAS  Google Scholar 

  • Sindhu S, Dadarwal K (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in Chickpea. Microbiological Research 156:353–358

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Lakra B, Niwas R, Singh M (2005) Influence of depth of planting on development of black scurf of potato (Rhizoctonia solani). Annals of Biology 21:241–244

    Google Scholar 

  • Singh S, Singh B, Singh A (2015) Nematodes: a threat to sustainability of agriculture. Procedia Environmental Sciences 29:215–216

    Article  Google Scholar 

  • Singh DP, Gupta VK, Prabha R (2019) Microbial interventions in agriculture and environment: Volume 2: Rhizosphere, microbiome and agro-ecology. Book, Springer Nature. https://link.springer.com/book/10.1007/978-981-13-8383-0

  • Singhai P, Sarma B, Srivastava J (2011) Biological management of common scab of potato through Pseudomonas species and vermicompost. Biological Control 57:150–157

    Article  Google Scholar 

  • Steijl H, Niemann GJ, Boon JJ (1999) Changes in chemical composition related to fungal infection and induced resistance in carnation and radish investigated by pyrolysis mass spectrometry. Physiological and Molecular Plant Pathology 55:297–311

    Article  CAS  Google Scholar 

  • Stevenson W, Loria R, Franc G, Weingartner D (2001) Compendium of potato diseases. The American Phytopathological Society Press, St. Paul, p 144p

    Google Scholar 

  • Stirling GR (2014) Biological control of plant-parasitic nematodes: soil ecosystem management in sustainable agriculture, 2nd edn. CABI. https://www.cabidigitallibrary.org/doi/book/10.1079/9781780644158.0000

  • Stockwell VO, Stack JP (2007) Using Pseudomonas spp. for integrated biological control. Phytopathology 97:244–249

    Article  PubMed  Google Scholar 

  • Sturz A, Kimpinski J (2004) Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant and Soil 262:241–249

    Article  CAS  Google Scholar 

  • Subbotin S, Sturhan D, Rumpenhorst HJ, Moens M (2003) Molecular and morphological characterisation of the Heterodera avenae species complex (Tylenchida: Heteroderidae). Nematology 5:515–538

    Article  CAS  Google Scholar 

  • Takishita Y, Charron J-B, Smith DL (2018) Biocontrol rhizobacterium Pseudomonas sp. 23S induces systemic resistance in tomato (Solanum lycopersicum L.) against bacterial canker Clavibacter michiganensis subsp. michiganensis. Frontiers in Microbiology 9:2119

    Article  PubMed  PubMed Central  Google Scholar 

  • Tariq-Khan M, Munir A, Mukhtar T, Hallmann J, Heuer H (2017) Distribution of root-knot nematode species and their virulence on vegetables in northern temperate agro-ecosystems of the Pakistani-administered territories of Azad Jammu and Kashmir. Journal of Plant Diseases and Protection 124:201–212

    Article  Google Scholar 

  • Taylor RJ, Salas B, Gudmestad NC (2004) Differences in etiology affect mefenoxam efficacy and the control of pink rot and leak tuber diseases of potato. Plant Disease 88:301–307

    Article  CAS  PubMed  Google Scholar 

  • Thanh D, Tarn L, Hanh N, Tuyen N, Srinivasan B, Lee S-Y, Park K-S (2009) Biological control of soilborne diseases on tomato, potato and black pepper by selected PGPR in the greenhouse and field in Vietnam. The Plant Pathology Journal 25:263–269

    Article  Google Scholar 

  • Tharmaraj N, Shah NP (2009) Antimicrobial effects of probiotics against selected pathogenic and spoilage bacteria in cheese-based dips. International Food Research Journal 16:261–276

    Google Scholar 

  • Tian B, Yang J, Lian L, Wang C, Zhang K (2007) Role of neutral protease from Brevibacillus laterosporus in pathogenesis of nematode. Applied Microbiology and Biotechnology 74:372–380

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: A possible connection between biotic and abiotic stress responses. Molecular Plant-Microbe Interactions 12:951–959

    Article  CAS  PubMed  Google Scholar 

  • Timper P (2014) Conserving and enhancing biological control of nematodes. Journal of Nematology 46:75

    PubMed  PubMed Central  Google Scholar 

  • Timper P, Koné D, Yin J, Ji P, McSpadden Gardener BB (2009) Evaluation of an antibiotic-producing strain of Pseudomonas fluorescens for suppression of plant-parasitic nematodes. Journal of Nematology 41:234–240

    PubMed  PubMed Central  Google Scholar 

  • Tobin J, Haydock P, Hare M, Woods S, Crump D (2008) Effect of the fungus Pochonia chlamydosporia and fosthiazate on the multiplication rate of potato cyst nematodes (Globodera pallida and G. rostochiensis) in potato crops grown under UK field conditions. Biological Control 46:194–201

    Article  Google Scholar 

  • Tomihama T, Nishi Y, Mori K, Shirao T, Iida T, Uzuhashi S, Ohkuma M, Ikeda S (2016) Rice bran amendment suppresses potato common scab by increasing antagonistic bacterial community levels in the rhizosphere. Phytopathology 106:719–728

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson D, Elphinstone J, El-Fatah H, Agag S, Kamal M, Soliman M, El-Aliem M, El-Ghany H, El-Haddad S, Fawzi FG (2005) Survival of the potato brown rot bacterium (Ralstonia solanacearum biovar 2) in Egyptian soils. Potato In progress: Science meets practice, 233–238

  • Toyoda H, Utsumi R (1991) Method for the prevention of Fusarium diseases and microorganisms used for the same. Google Patents. https://patents.google.com/patent/AU605489B2/en

  • Trudgill DL, Bala G, Blok VC, Daudi A, Davies KG, Gowen SR, Fargette M, Madulu JD, Mateille T, Mwageni W (2000) The importance of tropical root-knot nematodes (Meloidogyne spp.) and factors affecting the utility of Pasteuria penetrans as a biocontrol agent. Nematology 2:823–845

    Article  Google Scholar 

  • Tsror L, Peretz-Alon I (2005) The influence of the inoculum source of Rhizoctonia solani on development of black scurf on potato. Journal of Phytopathology 153:240–244

    Article  Google Scholar 

  • Tsuda K, Tsuji G, Higashiyama M, Ogiyama H, Umemura K, Mitomi M, Kubo Y, Kosaka Y (2016) Biological control of bacterial soft rot in Chinese cabbage by Lactobacillus plantarum strain BY under field conditions. Biological Control 100:63–69

    Article  Google Scholar 

  • Van Bniggen AH, Termorskuizen AJ (2003) Integrated approaches to root disease management in organic farming systems. Australasian Plant Pathology 32:141–156

    Article  Google Scholar 

  • Van Loon L, Bakker P, Pieterse C (1998) Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36:453–483

    Article  PubMed  Google Scholar 

  • Van Wees SCM, de Swart EAM, van Pelt JA, van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 97:8711–8716

    Article  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. Journal of Biotechnology 91:127–141

    Article  CAS  PubMed  Google Scholar 

  • Walker JE, Abraham EP (1970) The structure of bacilysin and other products of Bacillus subtilis. The Biochemical Journal 118:563–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiology 132:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters D, Fountaine J (2009) Practical application of induced resistance to plant diseases: An appraisal of effectiveness under field conditions. The Journal of Agricultural Science 147:523–535

    Article  CAS  Google Scholar 

  • Wang Z, Li Y, Zhuang L, Yu Y, Liu J, Zhang L, Gao Z, Wu Y, Gao W, Ding G-c (2019) A rhizosphere-derived consortium of Bacillus subtilis and Trichoderma harzianum suppresses common scab of potato and increases yield. Computational and Structural Biotechnology Journal 17:645–653

    Article  PubMed  PubMed Central  Google Scholar 

  • Wani AH, Askary TH, Martinelli PRP (2015) Plant growth-promoting rhizobacteria as biocontrol agents of Phytonematodes. In: Biocontrol Agents of Phytonematodes. CAB International, Wallingford, pp 339-364. https://doi.org/10.1079/9781780643755.0339

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Weller D, Cook R (1983) Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73:463–469

    Article  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Wharton D, Worland M (2001) Water relations during desiccation of cysts of the potato-cyst nematode Globodera rostochiensis. Journal of Comparative Physiology B 171:121–126

    Article  CAS  Google Scholar 

  • Wilson BR, Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y (2016) Siderophores in iron metabolism: From mechanism to therapy potential. Trends Mol Med 22:1077–1090

    CAS  Google Scholar 

  • Wolfgang A, Taffner J, Guimarães RA, Coyne D, Berg G (2019) Novel strategies for soil-borne diseases: exploiting the microbiome and volatile-based mechanisms toward controlling Meloidogyne-based disease complexes. Frontiers in Microbiology 10:1296

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Reddy MS, Ryu CM, McInroy JA, Wilson M, Kloepper JW (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333

    Article  CAS  PubMed  Google Scholar 

  • Yanti Y, Hamid H, Reflin R, Yaherwandi Y, Suhendra D, Hariandi D, Suriani NL (2022) Evaluation of the effect of PGPR strains on tomato growth and suppression of Ralstonia wilt disease. KnE Life Sciences, The First Asian PGPR Indonesian Chapter International e-Conference, pp 664–671. https://doi.org/10.18502/kls.v7i3.11170

  • Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47:138–145

    Article  Google Scholar 

  • Yuan J, Ruan Y, Wang B, Zhang J, Waseem R, Huang Q, Shen Q (2013) Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants. Journal of Agricultural and Food Chemistry 61:3774–3780

    Article  CAS  PubMed  Google Scholar 

  • Zimina M, Sukhih S, Babich O, Noskova SY, Abrashina A, Prosekov AY (2016): Investigating antibiotic activity of the genus bacillus strains and properties of their bacteriocins in order to develop next-generation pharmaceuticals. Foods and Raw Materials 4

Download references

Author information

Authors and Affiliations

Authors

Contributions

AMA, AHH, GSE, and MSA suggested the research topic, investigated the article, planned the research methodology, and wrote the original draft. GSE drew the figures. AMA, AHH, GSE, DAE, SS, DHMA, and MSA participated in data representation and article revising and editing. All authors read and approved the final article.

Corresponding authors

Correspondence to Amr H. Hashem or Gharieb S. El-Sayyad.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participation and/or animals

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelaziz, A.M., Hashem, A.H., El-Sayyad, G.S. et al. Biocontrol of soil borne diseases by plant growth promoting rhizobacteria. Trop. plant pathol. 48, 105–127 (2023). https://doi.org/10.1007/s40858-022-00544-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-022-00544-7

Keywords

Navigation