Skip to main content
Log in

Antifungal performance of extracellular chitinases and culture supernatants of Streptomyces galilaeus CFFSUR-B12 against Mycosphaerella fijiensis Morelet

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The tropical and mycoparasite strain Streptomyces galilaeus CFFSUR-B12 was evaluated as an antagonist of Mycosphaerella fijiensis Morelet, causal agent of the Black Sigatoka Disease (BSD) of banana. On zymograms of CFFSUR-B12 culture supernatants, we detected four chitinases of approximately 32 kDa (Chi32), 20 kDa (Chi20), and two with masses well over 170 kDa (ChiU) that showed little migration during denaturing electrophoresis at different concentrations of polyacrylamide. The thymol-sulphuric acid assay showed that the ChiU were glycosylated chitinases. Moreover, matrix assisted laser desorption ionization time-of-flight MS analysis revealed that the ChiU are the same protein and identical to a family 18 chitinase from Streptomyces sp. S4 (gi|498328075). Chi32 was similar to an extracellular protein from Streptomyces albus J1074 (gi|478687481) and Chi20 was non-significantly similar to chitinases from five different strains of Streptomyces (P > 0.05). Subsequently, Chi32 and Chi20 were partially purified by anion exchange and hydrophobic interaction chromatography and tested against M. fijiensis. Chitinases failed to inhibit ascospore germination, but inhibited up to 35 and 62 % of germ tube elongation and mycelial growth, respectively. We found that crude culture supernatant and living cells of S. galilaeus CFFSUR-B12 were the most effective in inhibiting M. fijiensis and are potential biocontrol agents of BSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akutsu K, Hirata A, Yamamoto M et al (1993) Growth inhibition of Botrytis spp. by Serratia marcescens B2 isolated from tomato phylloplane. Ann Phytopath Soc Jpn 59:18–25

    Article  CAS  Google Scholar 

  • Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635

    Article  CAS  Google Scholar 

  • Bayoumi AE, Ordoñez C, Pérez Y et al (2002) Citotoxicidad del fungicida mancozeb en cultivos de CHO-K1. Revista de Toxicología 19:29–34. www.redaly.org/articulo.oa?id=91919103. ISSN 0212-7113

  • Bentley SD, Chater KF, Cerdeno-Tarraga A-M et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28

    Article  CAS  Google Scholar 

  • Blakeman JP, Fokkema NJ (1982) Potential for biological control of plant diseases on the phylloplane. Annu Rev Phytopathol 20:167–190

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Broadway RM, Williams DL, Kain WC et al (1995) Partial characterization of chitinolytic enzymes from Streptomyces albidoflavus. Lett Appl Microbiol 20:271–276

    Article  CAS  Google Scholar 

  • Brurberg MB, Nes IF, Eijsink VGH (1996) Comparative studies of chitinases A and B from Serratia marcescens. Microbiology 142:1581–1589

    Article  CAS  Google Scholar 

  • Brzezinska MS, Jankiewicz U, Burkowska A (2013) Purification and characterization of Streptomyces albidoflavus antifungal components. Appl Biochem Microbiol 49:451–457

    Article  Google Scholar 

  • Brzezinska MS, Jankiewicz U, Burkowska A, Walczak M (2014) Chitinolytic microorganisms and their possible application in environmental protection. Curr Microbiol 68:71–81

    Article  Google Scholar 

  • Calviello G, Piccioni E, Boninsegna A et al (2006) DNA damage and apoptosis induction by the pesticide Mancozeb in rat cells: involvement of the oxidative mechanism. Toxicol Appl Pharmacol 211:87–96

    Article  CAS  Google Scholar 

  • Ceballos I, Mosquera S, Angulo M et al (2012) Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis. Microb Ecol 64:641–653

    Article  Google Scholar 

  • Chater KF (2006) Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos Trans R Soc B Biol Sci 361:761–768

    Article  CAS  Google Scholar 

  • Chater KF, Biró S, Lee KJ et al (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198

    Article  CAS  Google Scholar 

  • Churchill ACL (2011) Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress towards understanding pathogen biology and detection, disease development, and the challenges of control. Mol Plant Pathol 12:307–328

    Article  CAS  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society, St. Paul

    Google Scholar 

  • da Sobrinho ISJ, Bataus LAM, Maitan VR, Ulhoa CJ (2005) Purification and Properties of an N-acetylglucosaminidase from Streptomyces cerradoensis. Biotechnol Lett 27:1273–1276

    Article  Google Scholar 

  • Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782

    Article  CAS  Google Scholar 

  • Duo-Chuan L (2006) Review of fungal chitinases. Mycopathologia 161:345–360

    Article  Google Scholar 

  • El-Sayed E-SA, Ezzat SM, Ghaly MF et al (2000) Purification and characterization of two chitinases from Streptomyces albovinaceus S-22. World J Microbiol Biotechnol 16:87–89

    Article  CAS  Google Scholar 

  • El-Tarabily KA, Soliman MH, Nassar AH et al (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49:573–583

    Article  Google Scholar 

  • Gal SW, Choi JY, Kim CY et al (1998) Cloning of the 52-kDa chitinase gene from Serratia marcescens KCTC2172 and its proteolytic cleavage into an active 35-kDa enzyme. FEMS Microbiol Lett 160:151–158

    Article  CAS  Google Scholar 

  • Gander JE (1984) Gel protein stains: glycoproteins. Methods Enzymol 104:447–451

    Article  CAS  Google Scholar 

  • Garfin DE (1990) One-dimensional gel electrophoresis. Methods Enzymol 182:425–441

    Article  CAS  Google Scholar 

  • Garibay-Cerdenares O, Hernández-Ramírez V, Osorio-Trujillo J et al (2014) Proteomic identification of fucosylated haptoglobin alpha isoforms in ascitic fluids and its localization in ovarian carcinoma tissues from Mexican patients. J Ovarian Res 7:27

    Article  Google Scholar 

  • Geissen V, Ramos FQ, Bastidas-Bastidas PDJ et al (2010) Soil and water pollution in a banana production region in tropical Mexico. Bull Environ Contam Toxicol 85:407–413

    Article  CAS  Google Scholar 

  • Gohel V, Singh A, Vimal M et al (2006) Bioprospecting and antifungal potential of chitinolytic microorganisms. Afr J Biotechnol 52:54–72. www.academicjournals.org/AJB. ISSN 1684-5315

  • Gómez Ramírez M, Rojas Avelizapa LI, Rojas Avelizapa NG, Cruz Camarillo R (2004) Colloidal chitin stained with Remazol Brilliant Blue R®, a useful substrate to select chitinolytic microorganisms and to evaluate chitinases. J Microbiol Methods 56:213–219

    Article  Google Scholar 

  • Gutiérrez-Román MI, Dunn MF, Tinoco-Valencia R et al (2014) Potentiation of the synergistic activities of chitinases ChiA, ChiB and ChiC from Serratia marcescens CFFSUR-B2 by chitobiase (Chb) and chitin binding protein (CBP). World J Microbiol Biotechnol 30:33–42

    Article  Google Scholar 

  • Haggag WM, Abdallh EG (2012) Purification and characterization of chitinase produced by endophytic Sptomyces hygroscopicus against some phytopathogens. J Microbiol Res 2:145–151

    Article  Google Scholar 

  • Henriques W, Jeffers RD, Lacher TE, Kendall RJ (1997) Agrochemical use on banana plantations in Latin America: perspectives on ecological risk. Environ Toxicol Chem 16:91–99

    Article  Google Scholar 

  • Herrera-Estrella A, Chet I (1999) Chitinases in biological control. EXS 87:171–184

    CAS  Google Scholar 

  • Hoang K-C, Lai T-H, Lin C-S et al (2011) The chitinolytic activities of Streptomyces sp. TH-11. Int J Mol Sci 12:56–65

    Article  CAS  Google Scholar 

  • Huang X, Yong X, Zhang R et al (2013) The supernatant of Bacillus pumilus SQR-N43 has antifungal activity towards Rhizoctonia solani. J Basic Microbiol 53:657–663

    Article  CAS  Google Scholar 

  • Jacome LH, Schuh W, Stevenson RE (1991) Effect of temperature and relative humidity on germination and germ tube development of Mycosphaerella fijiensis var. difformis. Phytopathology 81:1480–1485

    Article  Google Scholar 

  • Joo G-J (2005) Purification and characterization of an extracellular chitinase from the antifungal biocontrol agent Streptomyces halstedii. Biotechnol Lett 27:1483–1486

    Article  CAS  Google Scholar 

  • Kämpfer P (2012) Family I. Streptomycetaceae. In: Goodfellow M, Kämpfer P, Busse H-J et al (eds) Bergey’s Manual® of systematic bacteriology. Springer, New York, pp 1446–1777

    Google Scholar 

  • Kawase T, Yokokawa S, Saito A et al (2006) Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Biosci Biotechnol Biochem 70:988–998

    Article  CAS  Google Scholar 

  • Kim KJ, Yang YJ, Kim JG (2003) Purification and characterization of chitinases from Streptomyces sp. M-20. J Biochem Mol Biol 36:185–189

    Article  CAS  Google Scholar 

  • Latgé JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290

    Article  Google Scholar 

  • Liau CY, Lin C-S (2008) A modified Coomassie Brilliant Blue G-250 staining method for the detection of chitinase activity and molecular weight after polyacrylamide gel electrophoresis. J Biosci Bioeng 106:111–113

    Article  CAS  Google Scholar 

  • Liu C-L, Shen C-R, Hsu F-F et al (2009) Isolation and identification of two novel SDS-resistant secreted chitinases from Aeromonas schubertii. Biotechnol Prog 25:124–131

    Article  CAS  Google Scholar 

  • Macagnan D, Romeiro R, de Souza J, Pomella AV (2006) Isolation of actinomycetes and endospore-forming bacteria from the cacao pod surface and their antagonistic activity against the witches’ broom and black pod pathogens. Phytoparasitica 34:122–132

    Article  Google Scholar 

  • Macagnan D, da Romeiro RS, Pomella AWV, deSouza JT (2008) Production of lytic enzymes and siderophores, and inhibition of germination of basidiospores of Moniliophthora (ex Crinipellis) perniciosa by phylloplane actinomycetes. Biol Control 47:309–314

    Article  CAS  Google Scholar 

  • Marín DH, Romero RA, Guzmán M, Sutton TB (2003) Black Sigatoka: an increasing threat to banana cultivation. Plant Dis 87:208–222

    Article  Google Scholar 

  • Mehrotra NK, Kumar S, Shukla Y (1987) Tumour initiating activity of mancozeb—a carbamate fungicide in mouse skin. Cancer Lett 36:283–287

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mohamed B, Benali S (2010) The talc formulation of Streptomyces antagonist against Mycosphaerella foot rot in pea (Pisum sativum L.) seedlings. Arch Phytopathol Plant Prot 43:438–445

    Article  Google Scholar 

  • Mukherjee G, Sen SK (2006) Purification, characterization, and antifungal activity of chitinase from Streptomyces venezuelae P10. Curr Microbiol 53:265–269

    Article  CAS  Google Scholar 

  • Muzzarelli RA (1999) Native, industrial and fossil chitins. EXS 87:1–6

    CAS  Google Scholar 

  • Nagpure A, Gupta RK (2013) Purification and characterization of an extracellular chitinase from antagonistic Streptomyces violaceusniger. J Basic Microbiol 53:429–439

    Article  CAS  Google Scholar 

  • Nagpure A, Choudhary B, Gupta RK (2014a) Chitinases: in agriculture and human healthcare. Crit Rev Biotechnol 34:215–232

    Article  CAS  Google Scholar 

  • Nagpure A, Choudhary B, Gupta RK (2014b) Mycolytic enzymes produced by Streptomyces violaceusniger and their role in antagonism towards wood-rotting fungi. J Basic Microbiol 54:397–407

    Article  CAS  Google Scholar 

  • Narayana KJP, Vijayalakshmi M (2009) Chitinase production by Streptomyces sp. ANU 6277. Braz J Microbiol 40:725–733

    Article  CAS  Google Scholar 

  • Ohno T, Armand S, Hata T et al (1996) A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J Bacteriol 178:5065–5070

    CAS  Google Scholar 

  • Orozco-Santos M, Orozco-Romero J, Pérez-Zamora O et al (2008) Prácticas culturales para el manejo de la sigatoka negra en bananos y plátanos. Trop Plant Pathol 33:189–196

    Article  Google Scholar 

  • Park SH, Lee JH, Lee HK (2000) Purification and characterization of chitinase from a marine bacterium, Vibrio sp. 98CJ11027. J Microbiol 38:224–229

    CAS  Google Scholar 

  • Pérez L, Hernández A, Hernández L, Pérez M (2002) Effect of trifloxystrobin and azoxystrobin on the control of black Sigatoka (Mycosphaerella fijiensis Morelet) on banana and plantain. Crop Prot 21:17–23

    Article  Google Scholar 

  • Pérez-Vázquez V, Guzmán-Flores J, Mares-Álvarez D et al (2014) Differential proteomic analysis of the pancreas of diabetic db/db mice reveals the proteins involved in the development of complications of diabetes mellitus. Int J Mol Sci 15:9579–9593

    Article  Google Scholar 

  • Prapagdee B, Kuekulvong C, Mongkolsuk S (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci 4:330–337

    Article  CAS  Google Scholar 

  • Procópio RE, da Silva IR, Martins MK et al (2012) Antibiotics produced by Streptomyces. Braz J Infect Dis 16:466–471

    Article  Google Scholar 

  • Purushotham P, Podile AR (2012) Synthesis of long-chain chitooligosaccharides by a hypertransglycosylating processive endochitinase of Serratia proteamaculans 568. J Bacteriol 194:4260–4271

    Article  CAS  Google Scholar 

  • Purushotham P, Arun PVPS, Prakash JSS, Podile AR (2012) Chitin binding proteins act synergistically with chitinases in Serratia proteamaculans 568. PLoS ONE 7:e36714. doi:10.1371/journal.pone.0036714

    Article  Google Scholar 

  • Qin S, Xing K, Jiang J-H et al (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473

    Article  CAS  Google Scholar 

  • Quecine MC, Araujo WL, Marcon J et al (2008) Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 47:486–491

    Article  CAS  Google Scholar 

  • Rabeeth M, Anitha A, Srikanth G (2011) Purification of an antifungal endochitinase from a potential biocontrol agent Streptomyces griseus. Pak J Biol Sci 14:788–797

    Article  CAS  Google Scholar 

  • Regev A, Keller M, Strizhov N et al (1996) Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol 62:3581–3586

    CAS  Google Scholar 

  • Reguera G, Leschine S (2003) Biochemical and genetic characterization of ChiA, the major enzyme component for the solubilization of chitin by Cellulomonas uda. Arch Microbiol 180:434–443

    Article  CAS  Google Scholar 

  • Romaguera A, Menge U, Breves R, Diekmann H (1992) Chitinases of Streptomyces olivaceoviridis and significance of processing for multiplicity. J Bacteriol 174:3450–3454

    CAS  Google Scholar 

  • Ruiz-Sánchez A, Cruz-Camarillo R, Salcedo-Hernández R, Barboza-Corona JE (2005) Chitinases from Serratia marcescens Nima. Biotechnol Lett 27:649–653

    Article  Google Scholar 

  • Schrempf H (2001) Recognition and degradation of chitin by Streptomycetes. Antonie Van Leeuwenhoek 79:285–289

    Article  CAS  Google Scholar 

  • Shimizu M (2011) Endophytic Actinomycetes: biocontrol agents and growth promoters. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 201–220

    Chapter  Google Scholar 

  • Shylaja M, Seshadri HS (1989) Glycoproteins: an overview. Biochem Educ 17:170–178

    Article  CAS  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  CAS  Google Scholar 

  • Someya N, Nakajima M, Hirayae K et al (2001) Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by biocontrol bacterium, Serratia marcescens strain B2 against gray mold pathogen, Botrytis cinerea. J Gen Plant Pathol 67:312–317

    Article  CAS  Google Scholar 

  • Suzuki K, Suzuki M, Taiyoji M et al (1998) Chitin binding protein (CBP21) in the culture supernatant of Serratia marcescens 2170. Biosci Biotechnol Biochem 62:128–135

    Article  CAS  Google Scholar 

  • Suzuki K, Sugawara N, Suzuki M et al (2002) Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Biosci Biotechnol Biochem 66:1075–1083

    Article  CAS  Google Scholar 

  • Trejo-Estrada SR, Paszczynski A, Crawford DL (1998) Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. J Ind Microbiol Biotechnol 21:81–90

    Article  CAS  Google Scholar 

  • Trudel J, Asselin A (1989) Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal Biochem 178:362–366

    Article  CAS  Google Scholar 

  • Tsujibo H, Minoura K, Miyamoto K et al (1993) Purification and properties of a thermostable chitinase from Streptomyces thermoviolaceus OPC-520. Appl Environ Microbiol 59:620–622

    CAS  Google Scholar 

  • Tu S, Qiu X, Cao L et al (2010) Expression and characterization of the chitinases from Serratia marcescens GEI strain for the control of Varroa destructor, a honey bee parasite. J Invertebr Pathol 104:75–82

    Article  CAS  Google Scholar 

  • Watanabe T, Kimura K, Sumiya T et al (1997) Genetic analysis of the chitinase system of Serratia marcescens 2170. J Bacteriol 179:7111–7117

    CAS  Google Scholar 

  • Watanabe T, Kanai R, Kawase T et al (1999) Family 19 chitinases of Streptomyces species: characterization and distribution. Microbiology 145:3353–3363

    Article  CAS  Google Scholar 

  • Watve M, Tickoo R, Jog M, Bhole B (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390

    Article  CAS  Google Scholar 

  • Williams ST, Robinson CS (1981) The role of Streptomycetes in decomposition of chitin in acidic soils. J Gen Microbiol 127:55–63

    CAS  Google Scholar 

  • Zaburannyi N, Rabyk M, Ostash B et al (2014) Insights into naturally minimised Streptomyces albus J1074 genome. BMC Genom. doi:10.1186/1471-2164-15-97

    Google Scholar 

  • Zhao J, Xue Q, Niu G et al (2013) Extracellular enzyme production and fungal mycelia degradation of antagonistic Streptomyces induced by fungal mycelia preparation of cucurbit plant pathogens. Ann Microbiol 63:809–812

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Benjamin Moreno especially thanks CONACYT for the Ph.D. scholarship provided (202979). Thanks also to Alejandra Arteaga, Katy Ortiz, Victor Hernández and Edgardo Madrid for their comments, technical support and advice on this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benjamín Moreno Castillo or Graciela Huerta Palacios.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo, B.M., Dunn, M.F., Navarro, K.G. et al. Antifungal performance of extracellular chitinases and culture supernatants of Streptomyces galilaeus CFFSUR-B12 against Mycosphaerella fijiensis Morelet. World J Microbiol Biotechnol 32, 44 (2016). https://doi.org/10.1007/s11274-015-1993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-015-1993-0

Keywords

Navigation