Skip to main content

Advertisement

Log in

Biomechanical analysis of new cross locking plates for metacarpal neck fracture

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

In this study, the fixation strength of the new cross locking plate for metacarpal neck fracture was compared with Kirschner-wire (K-wire) or traditional dorsal locking plate.

Methods

Transverse metacarpal neck fracture models were created on 24 artificial metacarpal bone specimens using saw blade. The specimens were then divided into three groups of different fixation methods: (1) Two K wires (KW group); (2) Traditional dorsal locking plate (TP group); and (3) New cross locking plate (NP group). All specimens were examined with cantilever bending test on a material testing system, and the maximum fracture force and stiffness were used as indicators to evaluate the facture fixation strength. The results were compared using a one-way analysis of variance and Tukey test for post hoc analysis.

Results

For the maximum fracture force, the fixation capacities of the three metacarpal neck fracture groups were ranked as follows: TP group (355.8±42.5 N, mean±standard deviation)≅NP group (353.9±49.3 N) > KW group (193.3±32.8 N). For stiffness, the fixation capacities of the three groups were ranked as follows: TP group (69.0±4.8 N/mm)≅NP group (64.2±6.3 N) > KW group (27.0±5.8 N).

Conclusion

The fixation strength of the new cross locking plate was similar to that of the traditional dorsal locking plate and was substantially higher than that achieved when only two K-wires were used. In addition, the new cross locking plate may reduce the occurrence of tendon adhesion, joint stiffness, and the screws being pulled out from the metacarpal head, which can be caused by traditional dorsal locking plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The data sets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Van Onselen, E., Karim, R., Hage, J. J., & Ritt, M. (2003). Prevalence and distribution of hand fractures,. Journal of Hand Surgery, 28, 491–495

    Article  Google Scholar 

  2. Thurston, A. (1992). “Pivot osteotomy for the correction of malunion of metacarpal neck fractures,“. The Journal of Hand Surgery: British & European Volume, 17, 580–582

    Article  CAS  Google Scholar 

  3. Chen, K. J., Wang, J. P., Yin, C. Y., Huang, H. K., Chang, M. C., & Huang, Y. C. (2020). Fixation of fifth metacarpal neck fractures: a comparison of medial locking plates with intramedullary K-wires,. Journal of Hand Surgery (European Volume), 45, 567–573

    Article  Google Scholar 

  4. Kim, J. K., & Kim, D. J. (2015). Antegrade intramedullary pinning versus retrograde intramedullary pinning for displaced fifth metacarpal neck fractures,. Clinical Orthopaedics and Related Research®, 473, 1747–1754

    Article  Google Scholar 

  5. Botte, M. J., Davis, J., Rose, B. A., von Schroeder, H. P., Gellman, H., Zinberg, E. M., & Abrams, R. A. (1992). “Complications of smooth pin fixation of fractures and dislocations in the hand and wrist,“Clinical Orthopaedics and Related Research,194–201,

  6. Jones, C. M., Padegimas, E. M., Weikert, N., Greulich, S., Ilyas, A. M., & Siegler, S. (2019). Headless screw fixation of metacarpal neck fractures: a mechanical comparative analysis,. Hand, 14, 187–192

    Article  Google Scholar 

  7. Jones, W. W. (1987). “Biomechanics of small bone fixation,“Clinical orthopaedics and related research,11–18,

  8. Padegimas, E. M., Warrender, W. J., Jones, C. M., & Ilyas, A. M. (2016). “Metacarpal neck fractures: a review of surgical indications and techniques,“Archives of trauma research,5:

  9. Boeckstyns, M. E. (2021). Challenging the dogma: severely angulated neck fractures of the fifth metacarpal must be treated surgically,. Journal of Hand Surgery (European Volume), 46, 30–36

    Article  Google Scholar 

  10. Chong, H. H., Hau, M. Y., Shah, R., & Singh, H. (2020). Management of Little Finger Metacarpal Fractures: A Meta-Analysis of the Current Evidence,. The Journal of Hand Surgery (Asian-Pacific Volume), 25, 281–290

    Article  Google Scholar 

  11. Zong, S. L., Zhao, G., Su, L. X., Liang, W. D., Li, L. G., Cheng, G. … Li, L. D. (2016). “Treatments for the fifth metacarpal neck fractures: a network meta-analysis of randomized controlled trials,“ Medicine,95:

  12. Barr, C., Behn, A. W., & Yao, J. (2013). Plating of metacarpal fractures with locked or nonlocked screws, a biomechanical study: how many cortices are really necessary?,. Hand, 8, 454–459

    Article  Google Scholar 

  13. Chiu, Y. C., Tsai, M. T., Hsu, C. E., Hsu, H. C., Huang, H. L., & Hsu, J. T. (2018). New fixation approach for transverse metacarpal neck fracture: a biomechanical study,. Journal of orthopaedic surgery and research, 13, 1–7

    Article  CAS  Google Scholar 

  14. Doht, S., Meffert, R. H., Raschke, M. J., Blunk, T., & Ochman, S. (2014). “Biomechanical analysis of the efficacy of locking plates during cyclic loading in metacarpal fractures,“The Scientific World Journal,2014:

  15. Elfar, J., Stanbury, S., Menorca, R. M. G., & Reed, J. D. (2014). Composite bone models in orthopaedic surgery research and education,. The Journal of the American Academy of Orthopaedic Surgeons, 22, 111

    PubMed  PubMed Central  Google Scholar 

  16. Malasitt, P., Owen, J. R., Tremblay, M. A., Wayne, J. S., & Isaacs, J. E. (2015). Fixation for metacarpal neck fracture: a biomechanical study,. Hand, 10, 438–443

    Article  Google Scholar 

  17. “American Society for Testing and Materials A. ASTM F1839–08 standard Specification for Rigid Polyurethane Foam for Useas a Standard Material for Testing Orthopedic Devices and Instruments.,“

  18. Watt, A. J., Ching, R. P., & Huang, J. I. (2015). Biomechanical evaluation of metacarpal fracture fixation: application of a 90 internal fixation model,. Hand, 10, 94–99

    Article  Google Scholar 

  19. Chiu, Y. C., Ho, T. Y., Hsu, C. E., Ting, Y. N., Tsai, M. T., & Hsu, J. T. (2022). Comparison of the fixation ability between lag screw and bone plate for oblique metacarpal shaft fracture,. Journal of Orthopaedic Surgery and Research, 17, 1–6

    Article  Google Scholar 

  20. Chiu, Y. C., Hsu, C. E., Ho, T. Y., Ting, Y. N., Tsai, M. T., & Hsu, J. T. (2021). Bone plate fixation ability on the dorsal and lateral sides of a metacarpal shaft transverse fracture,. Journal of Orthopaedic Surgery and Research, 16, 1–10

    Article  Google Scholar 

  21. Winter, M., Balaguer, T., Bessiere, C., Carles, M., & Lebreton, E. (2007). Surgical treatment of the boxer’s fracture: transverse pinning versus intramedullary pinning,. Journal of Hand Surgery (European Volume), 32, 709–713

    Article  CAS  Google Scholar 

  22. Balaram, A. K., & Bednar, M. S. (2010). Complications after the fractures of metacarpal and phalanges,. Hand clinics, 26, 169–177

    Article  Google Scholar 

  23. Dreyfuss, D., Allon, R., Izacson, N., & Hutt, D. (2019). A comparison of locking plates and intramedullary pinning for fixation of metacarpal shaft fractures,. Hand, 14, 27–33

    Article  Google Scholar 

  24. Ozer, K., Gillani, S., Williams, A., Peterson, S. L., & Morgan, S. (2008). Comparison of intramedullary nailing versus plate-screw fixation of extra-articular metacarpal fractures,. The Journal of hand surgery, 33, 1724–1731

    Article  Google Scholar 

  25. Facca, S., Ramdhian, R., Pelissier, A., Diaconu, M., & Liverneaux, P. (2010). Fifth metacarpal neck fracture fixation: locking plate versus K-wire?,. Orthopaedics & Traumatology: Surgery & Research, 96, 506–512

    CAS  Google Scholar 

  26. Fusetti, C., Meyer, H., Borisch, N., Stern, R., Della Santa, D., & Papaloïzos, M. (2002). Complications of plate fixation in metacarpal fractures,. Journal of Trauma and Acute Care Surgery, 52, 535–539

    Article  Google Scholar 

  27. Page, S. M., & Stern, P. J. (1998). Complications and range of motion following plate fixation of metacarpal and phalangeal fractures,. The Journal of hand surgery, 23, 827–832

    Article  CAS  Google Scholar 

  28. Bozic, K. J., Perez, L. E., Wilson, D. R., Fitzgibbons, P. G., & Jupiter, J. B. (2001). Mechanical testing of bioresorbable implants for use in metacarpal fracture fixation,. The Journal of hand surgery, 26, 755–761

    Article  CAS  Google Scholar 

  29. Curtis, B. D., Fajolu, O., Ruff, M. E., & Litsky, A. S. (2015). Fixation of Metacarpal Shaft Fractures: Biomechanical Comparison of Intramedullary Nail Crossed K-Wires and Plate‐Screw Constructs,. Orthopaedic surgery, 7, 256–260

    Article  Google Scholar 

  30. Liodaki, E., Wendlandt, R., Waizner, K., Schopp, B. E., Mailänder, P., & Stang, F. (2017). “A biomechanical analysis of plate fixation using unicortical and bicortical screws in transverse metacarpal fracture models subjected to 4-point bending and dynamical bending test,“Medicine,96:

  31. Patel, M., Castañeda, P., Campbell, D. H., Putnam, J. G., & McKee, M. D. (2021). “Threaded Intramedullary Nails Are Biomechanically Superior to Crossed K-wires for Metacarpal Neck Fractures,“ HAND,15589447211003182,

Download references

Acknowledgements

Not applicable.

Funding

This research was supported by Kuang Tien General Hospital, Taiwan (Kuang Tien 109-04) and China Medical University, Taiwan (CMU110-MF-95).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Tzu Tsai PhD.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors have no financial or personal relationships with people or organizations that could be considered inappropriate for conducting this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CY., Liu, TY., Hsu, JT. et al. Biomechanical analysis of new cross locking plates for metacarpal neck fracture. J. Med. Biol. Eng. 42, 404–413 (2022). https://doi.org/10.1007/s40846-022-00713-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-022-00713-8

Keywords

Navigation