Skip to main content
Log in

Anchoring ultrafine CoP and CoSb nanoparticles into rich N-doped carbon nanofibers for efficient potassium storage

锚定于富氮掺杂碳纳米纤维中的超细CoP和CoSb纳米颗粒用于高效钾离子存储

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Transition-metal compounds have received extensive attention from researchers due to their high reversible capacity and suitable voltage platform as potassium-ion battery anodes. However, these materials commonly feature a poor conductivity and a large volume expansion, thus leading to underdeveloped rate capability and cyclic stability. Herein, we successfully encapsulated ultrafine CoP and CoSb nanoparticles into rich N-doped carbon nanofibers (NCFs) via electrospinning, carbonization, and phosphorization (antimonization). The N-doped carbon fiber prevents the aggregation of nanoparticles, buffers the volume expansion of CoP and CoSb during charging and discharging, and improves the conductivity of the composite material. As a result, the CoP/NCF anode exhibits excellent potassium-ion storage performance, including an outstanding reversible capacity of 335 mA h g−1, a decent capacity retention of 79.3% after 1000 cycles at 1 A g−1 and a superior rate capability of 148 mA h g−1 at 5 A g−1, superior to most of the reported transition-metalbased potassium-ion battery anode materials.

摘要

作为钾离子电池负极, 过渡金属化合物由于其高可逆容量和合适的电压平台而受到研究人员的广泛关注. 然而, 这些材料通常具有较差的导电性和超过80%的体积膨胀. 这些缺点往往会对电池的倍率性能和循环稳定性产生不利影响. 在本文中, 我们通过静电纺丝、碳化和磷化(锑化)成功地将超细CoP和CoSb纳米颗粒封装到富氮掺杂的碳纳米纤维中. 氮掺杂的碳纳米纤维有效防止了纳米颗粒聚集, 缓冲了充放电过程中CoP和CoSb的体积膨胀, 并提高了材料的导电性. 因此, CoP/氮掺杂的碳纳米纤维(CoP/NCF)负极表现出优异的钾离子存储性能, 包括335 mA h g −1 的可逆容量、长循环性能(在1 A g−1 下经1000次循环仍能保持79.3%的初始可逆容量), 以及在5 A g−1 下148mAh g−1的优异倍率性能, 超过了大多数已报道的过渡金属化合物基钾离子电池负极材料.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winter M, Barnett B, Xu K. Before Li ion batteries. Chem Rev, 2018, 118: 11433–11456

    Article  CAS  Google Scholar 

  2. Wu K, Ling M, Zeng P, et al. Self-assembled multifunctional Fe3O4 hierarchical microspheres: high-efficiency lithium-ion battery materials and hydrogenation catalysts. Sci China Mater, 2021, 64: 1058–1070

    Article  CAS  Google Scholar 

  3. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334: 928–935

    Article  CAS  Google Scholar 

  4. Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries. Chem Rev, 2014, 114: 11636–11682

    Article  CAS  Google Scholar 

  5. Li Y, Ji J, Yao J, et al. Sodium ion storage performance and mechanism in orthorhombic V2O5 single-crystalline nanowires. Sci China Mater, 2021, 64: 557–570

    Article  CAS  Google Scholar 

  6. Zhang W, Sun Y, Deng H, et al. Dielectric polarization in inverse spinel-structured Mg2TiO4 coating to suppress oxygen evolution of Li-rich cathode materials. Adv Mater, 2020, 32: 2000496

    Article  CAS  Google Scholar 

  7. Rajagopalan R, Tang Y, Ji X, et al. Advancements and challenges in potassium ion batteries: a comprehensive review. Adv Funct Mater, 2020, 30: 1909486

    Article  CAS  Google Scholar 

  8. Hosaka T, Kubota K, Hameed AS, et al. Research development on K-ion batteries. Chem Rev, 2020, 120: 6358–6466

    Article  CAS  Google Scholar 

  9. Wang W, Ji B, Yao W, et al. A novel low-cost and environment-friendly cathode with large channels and high structure stability for potassium-ion storage. Sci China Mater, 2021, 64: 1047–1057

    Article  CAS  Google Scholar 

  10. Xu Z, Du S, Yi Z, et al. Water chestnut-derived slope-dominated carbon as a high-performance anode for high-safety potassium-ion batteries. ACS Appl Energy Mater, 2020, 3: 11410–11417

    Article  CAS  Google Scholar 

  11. Xu S, Yin Y, Niu H, et al. Adsorption and diffusion of alkali atoms on FeX2 (X = Se, S) surfaces for potassium-ion battery applications. Appl Surf Sci, 2021, 536: 147774

    Article  CAS  Google Scholar 

  12. Liao J, Hu Q, Mu J, et al. Introducing a conductive pillar: a polyaniline intercalated layered titanate for high-rate and ultra-stable sodium and potassium ion storage. Chem Commun, 2020, 56: 8392–8395

    Article  CAS  Google Scholar 

  13. Ge X, Liu S, Qiao M, et al. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew Chem Int Ed, 2019, 58: 14578–14583

    Article  CAS  Google Scholar 

  14. Chu Y, Guo L, Xi B, et al. Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from Mn-organic clusters for efficient lithium storage. Adv Mater, 2018, 30: 1704244

    Article  Google Scholar 

  15. Xiao Z, Huang YC, Dong CL, et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J Am Chem Soc, 2020, 142: 12087–12095

    Article  CAS  Google Scholar 

  16. Zhang Z, Du Y, Wang QC, et al. A yolk-shell-structured FePO4 cathode for high-rate and long-cycling sodium-ion batteries. Angew Chem Int Ed, 2020, 59: 17504–17510

    Article  CAS  Google Scholar 

  17. Zhou D, Yi J, Zhao X, et al. Confining ultrasmall CoP nanoparticles into nitrogen-doped porous carbon via synchronous pyrolysis and phosphorization for enhanced potassium-ion storage. Chem Eng J, 2021, 413: 127508

    Article  CAS  Google Scholar 

  18. Lu X, Dong S, Chen Z, et al. Preparation of carbon coated Ti2Nb2O9 nanosheets and its sodium ion storage properties. Acta Physico-Chim Sin, 2020, 36: 1906024

    Google Scholar 

  19. Wang S. Ultrathin carbon encapsulating transition metal-doped MoP electrocatalysts for hydrogen evolution reaction. Acta Physico-Chim Sin, 2020, 36: 2011013

    Article  Google Scholar 

  20. Wang W, Jiang B, Qian C, et al. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv Mater, 2018, 30: 1801812

    Article  Google Scholar 

  21. Zhang T, Yang C, Sun S, et al. Mesoporous Fe3O4@C nanoarrays as high-performance anode for rechargeable Ni/Fe battery. Sci China Mater, 2021, 64: 1105–1113

    Article  CAS  Google Scholar 

  22. Xu YH, Zhang BH, Gong GY, et al. Electrochemical properties study of Sb2O3 doped Li4Ti5O12. Acta Physico-Chim Sin, 2006, 22: 1336–1341

    Article  CAS  Google Scholar 

  23. Zhang W, Li B, Sun YG, et al. Spherical mesoporous metal oxides with tunable orientation enabled by growth kinetics control. J Am Chem Soc, 2020, 142: 17897–17902

    Article  CAS  Google Scholar 

  24. Yi Y, Zhao W, Zeng Z, et al. ZIF-8@ZIF-67-derived nitrogen-doped porous carbon confined CoP polyhedron targeting superior potassium-ion storage. Small, 2020, 16: 1906566

    Article  CAS  Google Scholar 

  25. Lai C, Zhang Z, Xu Y, et al. A general strategy for embedding ultrasmall CoMx nanocrystals (M = S, O, Se, and Te) in hierarchical porous carbon nanofibers for high-performance potassium storage. J Mater Chem A, 2021, 9: 1487–1494

    Article  CAS  Google Scholar 

  26. Chen S, Feng Y, Wang J, et al. Free-standing N-doped hollow carbon fibers as high-performance anode for potassium ion batteries. Sci China Mater, 2021, 64: 547–556

    Article  Google Scholar 

  27. Han J, Zhu K, Liu P, et al. N-doped CoSb@C nanofibers as a self-supporting anode for high-performance K-ion and Na-ion batteries. J Mater Chem A, 2019, 7: 25268–25273

    Article  CAS  Google Scholar 

  28. Liu Q, Hu Z, Liang Y, et al. Facile synthesis of hierarchical hollow CoP@C composites with superior performance for sodium and potassium storage. Angew Chem Int Ed, 2020, 59: 5159–5164

    Article  CAS  Google Scholar 

  29. Zhang C, Qiao Y, Xiong P, et al. Conjugated microporous polymers with tunable electronic structure for high-performance potassium-ion batteries. ACS Nano, 2019, 13: 745–754

    Article  CAS  Google Scholar 

  30. Bai J, Xi B, Mao H, et al. One-step construction of N,P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv Mater, 2018, 30: 1802310

    Article  Google Scholar 

  31. Sarkar S, Chaupatnaik A, Ramarao SD, et al. Operando sodiation mechanistic study of a new antimony-based intermetallic CoSb as a highperformance sodium-ion battery anode. J Phys Chem C, 2020, 124: 15757–15768

    Article  CAS  Google Scholar 

  32. Liu Z, Li P, Suo G, et al. Zero-strain K0.6Mn1F2.7 hollow nanocubes for ultrastable potassium ion storage Energy Environ Sci, 2018, 11: 3033–3042

    Article  CAS  Google Scholar 

  33. Jia B, Yu Q, Zhao Y, et al. Bamboo-like hollow tubes with MoS2/N-doped-C interfaces boost potassium-ion storage Adv Funct Mater, 2018, 28: 1803409

    Article  Google Scholar 

  34. Wu H, Hou C, Shen G, et al. MoS2/C/C nanofiber with double-layer carbon coating for high cycling stability and rate capability in lithiumion batteries Nano Res, 2018, 11: 5866–5878

    Article  CAS  Google Scholar 

  35. Li P, Chen C, Ding S, et al. Controllable deposition of FeV2S4 in carbon fibers for sodium-ion storage with high capacity and long lifetime Sci China Mater, 2021, 64: 1355–1366

    Article  CAS  Google Scholar 

  36. Li Y, Qian J, Zhang M, et al. Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries Adv Mater, 2020, 32: 2005802

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22075147) and the Natural Science Foundation of Jiangsu Province (BK20180086).

Author information

Authors and Affiliations

Authors

Contributions

Zhou X conceived the overall concept and guided the whole writing Xu J and Lai C carried out the synthesis, characterized the materials, analyzed the data, and wrote the paper All authors contributed to the general discussion.

Corresponding author

Correspondence to Xiaosi Zhou  (周小四).

Additional information

Jingyi Xu is currently an undergraduate student under the supervision of Prof. Xiaosi Zhou at the School of Chemistry and Materials Science, Nanjing Normal University She was recommended to Tsinghua University and will start her PhD in September 2021 Her research interests include the fabrication of highperformance electrode materials for alkali-metal ion batteries.

Xiaosi Zhou received his BSc from Anhui University (2005) and PhD from the Institute of Chemistry, Chinese Academy of Sciences (ICCAS) (2010). He then conducted postdoctoral research in Prof. Robin D. Rogers’ group at the University of Alabama, Prof. Yu-Guo Guo’s group at ICCAS, and Prof. Xiong Wen (David) Lou’s group at Nanyang Technological University. He is currently a Professor at Nanjing Normal University. His research interests focus on the design and synthesis of advanced electrode materials for alkali-metal ion batteries.

Conflict of interest

The authors declare no conflict of interest.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Lai, C., Duan, L. et al. Anchoring ultrafine CoP and CoSb nanoparticles into rich N-doped carbon nanofibers for efficient potassium storage. Sci. China Mater. 65, 43–50 (2022). https://doi.org/10.1007/s40843-021-1754-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1754-7

Keywords

Navigation