Skip to main content
Log in

Toxic effects of metal oxide nanoparticles and their underlying mechanisms

金属氧化物纳米颗粒生物毒性效应及毒性机理研究进展

  • Review
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Nanomaterials have attracted considerable interest owing to their unique physicochemical properties. The wide application of nanomaterials has raised many concerns about their potential risks to human health and the environment. Metal oxide nanoparticles (MONPs), one of the main members of nanomaterials, have been applied in various fields, such as food, medicine, cosmetics, and sensors. This review highlights the bio-toxic effects of widely applied MONPs and their underlying mechanisms. Two main underlying toxicity mechanisms, reactive oxygen species (ROS)- and non-ROS-mediated toxicities, of MONPs have been widely accepted. ROS activates oxidative stress, which leads to lipid peroxidation and cell membrane damage. In addition, ROS can trigger the apoptotic pathway by activating caspase-9 and -3. Non-ROS-mediated toxicity mechanism includes the effect of released ions, excessive accumulation of NPs on the cell surface, and combination of NPs with specific death receptors. Furthermore, the combined toxicity evaluation of some MONPs is also discussed. Toxicity may dramatically change when nanomaterials are used in a combined system because the characteristics of NPs that play a key role in their toxicity such as size, surface properties, and chemical nature in the complex system are different from the pristine NPs.

摘要

纳米材料由于其独特的性质已经被广泛应用于很多领域, 但随着纳米材料的大规模制备和广泛应用, 它对环境以及人类的潜在危害越来越引起人们的重视. 金属氧化物纳米颗粒(MONPs)作为一类纳米材料大量地用于食品、医药、化妆品、传感器等领域. 因此, MONPs的生物毒性研究至关重要. 本文主要对目前应用最为广泛的几种MONPs (纳米二氧化钛、氧化锌、氧化铁等)生物毒性的研究及其毒性机理做了总结. MONPs导致毒性的机制有两个方面: ROS介导的毒性和非ROS介导的毒性. ROS激活氧化应激, 导致脂质过氧化, 引起细胞膜损伤, 此外, ROS可以激活caspase-9和caspase-3, 触发凋亡通路. 非ROS介导的毒性机制, 包括MONPs释放的离子引起的毒性, 纳米粒子在细胞表面的粘附以及与特定的死亡受体的相互作用. 此外, 由于当纳米材料处于一个复杂的体系中时, 它自身的性质, 包括尺寸、粒径、表面化学性质等都会发生变化, 我们对一些MONPs的复合毒性也做了讨论.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev, 2012, 41: 2256–2282

    Article  Google Scholar 

  2. Wu QS, Liu JW, Wang GS, et al. A surfactant-free route to synthesize BaxSr1−x TiO3 nanoparticles at room temperature, their dielectric and microwave absorption properties. Sci China Mater, 2016, 59: 609–617

    Article  Google Scholar 

  3. Arvizo RR, Bhattacharyya S, Kudgus RA, et al. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev, 2012, 41: 2943

    Article  Google Scholar 

  4. Llevot A, Astruc D. Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem Soc Rev, 2012, 41: 242–257

    Article  Google Scholar 

  5. Sun Z, Liao T, Kou L. Strategies for designing metal oxide nanostructures. Sci China Mater, 2017, 60: 1–24

    Article  Google Scholar 

  6. Rana S, Bajaj A, Mout R, et al. Monolayer coated gold nanoparticles for delivery applications. Adv DrugDeliver Rev, 2012, 64: 200–216

    Article  Google Scholar 

  7. Lin X, Zuo YY, Gu N. Shape affects the interactions of nanoparticles with pulmonary surfactant. Sci China Mater, 2015, 58: 28–37

    Article  Google Scholar 

  8. Colvin VL. The potential environmental impact of engineered nanomaterials. Nat Biotechnol, 2003, 21: 1166–1170

    Article  Google Scholar 

  9. Zhao Y, Xing G, Chai Z. Nanotoxicology: are carbon nanotubes safe? Nat Nanotech, 2008, 3: 191–192

    Article  Google Scholar 

  10. Hoet PHM, Nemmar A, Nemery B. Health impact of nanomaterials? Nat Biotechnol, 2004, 22: 19

    Article  Google Scholar 

  11. Service RF. Nanomaterials show signs of toxicity. Science, 2003, 300: 243

    Article  Google Scholar 

  12. Chen L, Remondetto GE, Subirade M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Tech, 2006, 17: 272–283

    Article  Google Scholar 

  13. Donaldson K, Tran L, Jimenez LA, et al. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol, 2005, 2: 10

    Article  Google Scholar 

  14. Cortie MB, McDonagh AM. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev, 2011, 111: 3713–3735

    Article  Google Scholar 

  15. Yang F, Li M, Cui H, et al. Altering the response of intracellular reactive oxygen to magnetic nanoparticles using ultrasound and microbubbles. Sci China Mater, 2015, 58: 467–480

    Article  Google Scholar 

  16. Koeneman BA, Zhang Y, Westerhoff P, et al. Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biol Toxicol, 2010, 26: 225–238

    Article  Google Scholar 

  17. Jani PU, McCarthy DE, Florence AT. Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int J Pharm, 1994, 105: 157–168

    Article  Google Scholar 

  18. Liu X, Zhang J, Tang S, et al. Growth enhancing effect of LBLassembled magnetic nanoparticles on primary bone marrow cells. Sci China Mater, 2016, 59: 901–910

    Article  Google Scholar 

  19. Ning Z, Sillanpää M, Pakbin P, et al. Field evaluation of a new particle concentrator-electrostatic precipitator system for measuring chemical and toxicological properties of particulate matter. Part Fibre Toxicol, 2008, 5: 15

    Article  Google Scholar 

  20. Wiesner MR, Lowry GV, Alvarez P, et al. Assessing the risks of manufactured nanomaterials. Environ Sci Technol, 2006, 40: 4336–4345

    Article  Google Scholar 

  21. Chen JL, Fayerweather WE. Epidemiologic study of workers exposed to titanium dioxide. J Occupational Environ Med, 1988, 30: 937–942

    Article  Google Scholar 

  22. Ghosh M, Chakraborty A, Mukherjee A. Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO2) nanoparticles on human erythrocyte and lymphocyte cells in vitro. J Appl Toxicol, 2013, 33: 1097–1110

    Article  Google Scholar 

  23. Zhang J, Li S, Yang P, et al. Deposition of transparent TiO2 nanotubes-films via electrophoretic technique for photovoltaic applications. Sci China Mater, 2015, 58: 785–790

    Article  Google Scholar 

  24. Magdolenova Z, Bilaničová D, Pojana G, et al. Impact of agglomeration and different dispersions of titanium dioxide nanoparticles on the human related in vitro cytotoxicity and genotoxicity. J Environ Monit, 2012, 14: 455–464

    Article  Google Scholar 

  25. Thomas KV, Farkas J, Farmen E, et al. Effects of dispersed aggregates of carbon and titanium dioxide engineered nanoparticles on rainbow trout hepatocytes. J Toxicol Environ Health A, 2011, 74: 466–477

    Article  Google Scholar 

  26. Sha BY, Gao W, Wang SQ, et al. Cytotoxicity of titanium dioxide nanoparticles differs in four liver cells from human and rat. Composites Part B-Eng, 2011, 42: 2136–2144

    Article  Google Scholar 

  27. Pujalté I, Passagne I, Brouillaud B, et al. Cytotoxicity and oxidative stress induced by differentmetallic nanoparticles on human kidney cells. Part Fibre Toxicol, 2011, 8: 10

    Article  Google Scholar 

  28. Botelho MC, Costa C, Silva S, et al. Effects of titanium dioxide nanoparticles in human gastric epithelial cells in vitro. Biomed Pharmacother, 2014, 68: 59–64

    Article  Google Scholar 

  29. Butler KS, Casey BJ, Garborcauskas GVM, et al. Assessment of titanium dioxide nanoparticle effects in bacteria: association, uptake, mutagenicity, co-mutagenicity and DNA repair inhibition. Mutation Res/Genet Toxicol Environ Mutagenesis, 2014, 768: 14–22

    Article  Google Scholar 

  30. Valdiglesias V, Costa C, Sharma V, et al. Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food Chem Toxicol, 2013, 57: 352–361

    Article  Google Scholar 

  31. Wang Y, Yao C, Li C, et al. Excess titaniumdioxide nanoparticles on the cell surface induce cytotoxicity by hindering ion exchange and disrupting exocytosis processes. Nanoscale, 2015, 7: 13105–13115

    Article  Google Scholar 

  32. Yin Y, Zhu WW, Guo LP, et al. RGDC functionalized titanium dioxide nanoparticles induce less damage to plasmid DNA but higher cytotoxicity to HeLa cells. J Phys Chem B, 2013, 117: 125–131

    Article  Google Scholar 

  33. Venkatasubbu GD, Ramasamy S, Avadhani GS, et al. Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zincdoped hydroxyapatite nanoparticles in human hepatoma cells. J Nanopart Res, 2012, 14: 819

    Article  Google Scholar 

  34. Liang G, Pu Y, Yin L, et al. Influence of different sizes of titanium dioxide nanoparticles on hepatic and renal functions in rats with correlation to oxidative stress. J Toxicol Environ Health A, 2009, 72: 740–745

    Article  Google Scholar 

  35. Zhang Y, Yu W, Jiang X, et al. Analysis of the cytotoxicity of differentially sized titanium dioxide nanoparticles inmurineMC3T3-E1 preosteoblasts. J Mater Sci-Mater Med, 2011, 22: 1933–1945

    Article  Google Scholar 

  36. Xiong S, George S, Yu H, et al. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO2) nanoparticles. Arch Toxicol, 2013, 87: 1075–1086

    Article  Google Scholar 

  37. Wang Y, Sui K, Fang J, et al. Cytotoxicity evaluation and subcellular location of titanium dioxide nanotubes. Appl Biochem Biotechnol, 2013, 171: 1568–1577

    Article  Google Scholar 

  38. Wang Y, Wang J, Deng X, et al. Direct imaging of titania nanotubes located in mouse neural stem cell nuclei. Nano Res, 2009, 2: 543–552

    Article  Google Scholar 

  39. Wang Y, Wu Q, Sui K, et al. A quantitative study of exocytosis of titanium dioxide nanoparticles from neural stem cells. Nanoscale, 2013, 5: 4737–4743

    Article  Google Scholar 

  40. Tsuji JS, Maynard AD, Howard PC, et al. Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci, 2005, 89: 42–50

    Article  Google Scholar 

  41. Lademann J, Weigmann HJ, Rickmeyer C, et al. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Physiol, 1999, 12: 247–256

    Article  Google Scholar 

  42. Wu J, Liu W, Xue C, et al. Toxicity and penetration of TiO2 nanoparticles in hairlessmice and porcine skin after subchronic dermal exposure. Toxicol Lett, 2009, 191: 1–8

    Article  Google Scholar 

  43. Hagens WI, Oomen AG, de Jong WH, et al. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharm, 2007, 49: 217–229

    Article  Google Scholar 

  44. Namavar F, Cheung CL, Sabirianov RF, et al. Lotus effect in engineered zirconia. Nano Lett, 2008, 8: 988–996

    Article  Google Scholar 

  45. Li J, Li Q, Xu J, et al. Comparative study on the acute pulmonary toxicity induced by 3 and 20 nm TiO2 primary particles in mice. Environ Toxicol Pharmacol, 2007, 24: 239–244

    Article  Google Scholar 

  46. Liu R, Yin L, Pu Y, et al. Pulmonary toxicity induced by three forms of titanium dioxide nanoparticles via intra-tracheal instillation in rats. Prog Nat Sci, 2009, 19: 573–579

    Article  Google Scholar 

  47. Hamilton RF, Wu N, Porter D, et al. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol, 2009, 6: 35

    Article  Google Scholar 

  48. Chen XX, Cheng B, Yang YX, et al. Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugarcoated chewing gum. Small, 2013, 9: 1765–1774

    Article  Google Scholar 

  49. Wang Y, Chen Z, Ba T, et al. Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small, 2013, 9: 1742–1752

    Article  Google Scholar 

  50. Fang J, Yuan LL, Yao CJ, et al. Biodistribution and toxicity study of titanium dioxide nanoparticles of different sizes after intravenous injection in mice. Adv Mater Res, 2014, 998–999: 196–199

    Google Scholar 

  51. Yao C, Li C, Ding L, et al. Effects of exposure routes on the biodistribution and toxicity of titanium dioxide nanoparticles inmice. J Nanosci Nanotechnol, 2016, 16: 7110–7117

    Article  Google Scholar 

  52. Zhang J, Lang HP, Huber F, et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat Nanotech, 2006, 1: 214–220

    Article  Google Scholar 

  53. Dunphy Guzmán KA, Taylor MR, Banfield JF. Environmental risks of nanotechnology: National Nanotechnology Initiative Funding, 2000−2004. Environ Sci Technol, 2006, 40: 1401–1407

    Article  Google Scholar 

  54. He W, Wu H, Wamer WG, et al. Unraveling the enhanced photocatalytic activity and phototoxicity of ZnO/metal hybrid nanostructures from generation of reactive oxygen species and charge carriers. ACS Appl Mater Interfaces, 2014, 6: 15527–15535

    Article  Google Scholar 

  55. Wissing SA, Müller RH. Solid lipid nanoparticles (SLN)—a novel carrier for UV blockers. Die Pharmazie, 2001, 56: 783–786

    Google Scholar 

  56. Zhang Y, Kang Z, Yan X, et al. ZnO nanostructures in enzyme biosensors. Sci China Mater, 2015, 58: 60–76

    Article  Google Scholar 

  57. Chen S, Lou Z, Chen D, et al. Highly flexible strain sensor based on ZnO nanowires and P(VDF-TrFE) fibers for wearable electronic device. Sci China Mater, 2016, 59: 173–181

    Article  Google Scholar 

  58. Wang Y, Yuan L, Yao C, et al. A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives. Nanoscale, 2014, 6: 15333–15342

    Article  Google Scholar 

  59. Mortimer M, Kasemets K, Kahru A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicol, 2010, 269: 182–189

    Article  Google Scholar 

  60. Suh KS, Lee YS, Seo SH, et al. Effect of zinc oxide nanoparticles on the function of MC3T3-E1 osteoblastic cells. Biol Trace Elem Res, 2013, 155: 287–294

    Article  Google Scholar 

  61. Xu M, Fujita D, Kajiwara S, et al. Contribution of physicochemical characteristics of nano-oxides to cytotoxicity. Biomaterials, 2010, 31: 8022–8031

    Article  Google Scholar 

  62. Chen R, Huo L, Shi X, et al. Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano, 2014, 8: 2562–2574

    Article  Google Scholar 

  63. Moos PJ, Chung K, Woessner D, et al. ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Chem Res Toxicol, 2010, 23: 733–739

    Article  Google Scholar 

  64. Sahu D, Kannan GM, Vijayaraghavan R. Size-dependent effect of zinc oxide on toxicity and inflammatory potential of humanmonocytes. J Toxicol Environ Health A, 2014, 77: 177–191

    Article  Google Scholar 

  65. Yin H, Casey PS, McCall MJ. Surface modifications of ZnO nanoparticles and their cytotoxicity. J Nanosci Nanotech, 2010, 10: 7565–7570

    Article  Google Scholar 

  66. Gilbert E, Pirot F, Bertholle V, et al. Commonly used UV filter toxicity on biological functions: review of last decade studies. Int J Cosmet Sci, 2013, 35: 208–219

    Article  Google Scholar 

  67. Cross SE, Innes B, Roberts MS, et al. Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novelmicronized zinc oxide formulation. Skin Pharmacol Physiol, 2007, 20: 148–154

    Article  Google Scholar 

  68. Filipe P, Silva JN, Silva R, et al. Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol Physiol, 2009, 22: 266–275

    Article  Google Scholar 

  69. Jang YS, Lee EY, Park YH, et al. The potential for skin irritation, phototoxicity, and sensitization of ZnO nanoparticles. Mol Cell Toxicol, 2012, 8: 171–177

    Article  Google Scholar 

  70. Prasad AS. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontology, 2008, 43: 370–377

    Article  Google Scholar 

  71. Rincker MJ, Hill GM, Link JE, et al. Effects of dietary iron supplementation on growth performance, hematological status, and whole-body mineral concentrations of nursery pigs. J Anim Sci, 2004, 82: 3189–3197

    Article  Google Scholar 

  72. Sharma V, Singh P, Pandey AK, et al. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutation Res-Genet Tox En, 2012, 745: 84–91

    Article  Google Scholar 

  73. Ko JW, Hong ET, Lee IC, et al. Evaluation of 2-week repeated oral dose toxicity of 100 nm zinc oxide nanoparticles in rats. Lab Anim Res, 2015, 31: 139–147

    Article  Google Scholar 

  74. Nie Z, Wang Y, Zhang Y, et al. Multi-shelled α-Fe2O3microspheres for high-rate supercapacitors. Sci China Mater, 2016, 59: 247–253

    Article  Google Scholar 

  75. Li W, Feng X, Liu D, et al. In situ redox strategy for large-scale fabrication of surfactant-free M-Fe2O3 (M = Pt, Pd, Au) hybrid nanospheres. Sci China Mater, 2016, 59: 191–199

    Article  Google Scholar 

  76. Ling D, Hyeon T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small, 2013, 9: 1450–1466

    Article  Google Scholar 

  77. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliver Rev, 2010, 62: 284–304

    Article  Google Scholar 

  78. Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev, 2008, 108: 2064–2110

    Article  Google Scholar 

  79. Cai H, An X, Cui J, et al. Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl Mater Interfaces, 2013, 5: 1722–1731

    Article  Google Scholar 

  80. Berry CC, Wells S, Charles S, et al. Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials, 2004, 25: 5405–5413

    Article  Google Scholar 

  81. Stroh A, Zimmer C, Gutzeit C, et al. Iron oxide particles formolecularmagnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radical Biol Med, 2004, 36: 976–984

    Article  Google Scholar 

  82. Pawelczyk E, Arbab AS, Chaudhry A, et al. In vitro model of bromodeoxyuridine or iron oxide nanoparticle uptake by activated macrophages fromlabeled stem cells: implications for cellular therapy. Stem Cells, 2008, 26: 1366–1375

    Article  Google Scholar 

  83. Siglienti I, Bendszus M, Kleinschnitz C, et al. Cytokine profile of iron-laden macrophages: implications for cellular magnetic resonance imaging. J Neuroimmunol, 2006, 173: 166–173

    Article  Google Scholar 

  84. Mahmoudi M, Simchi A, Imani M, et al. An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: a new toxicity identification procedure. Nanotechnology, 2009, 20: 225104

    Article  Google Scholar 

  85. Huang G, Diakur J, Xu Z, et al. Asialoglycoprotein receptor-targeted superparamagnetic iron oxide nanoparticles. Int J Pharm, 2008, 360: 197–203

    Article  Google Scholar 

  86. Naqvi S, Samim M, Abdin M, et al. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine, 2010, 5: 983–989

    Article  Google Scholar 

  87. Kunzmann A, Andersson B, Vogt C, et al. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol, 2011, 253: 81–93

    Article  Google Scholar 

  88. Karlsson HL, Cronholm P, Gustafsson J, et al. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol, 2008, 21: 1726–1732

    Article  Google Scholar 

  89. Hussain SM, Hess KL, Gearhart JM, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro, 2005, 19: 975–983

    Article  Google Scholar 

  90. Hohnholt MC, Dringen R. Uptake andmetabolismof iron and iron oxide nanoparticles in brain astrocytes. Biochm Soc Trans, 2013, 41: 1588–1592

    Article  Google Scholar 

  91. Gu L, Fang RH, Sailor MJ, et al. In vivo clearance and toxicity of monodisperse iron oxide nanocrystals. ACS Nano, 2012, 6: 4947–4954

    Article  Google Scholar 

  92. Zhu MT, Feng WY, Wang Y, et al. Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci, 2008, 107: 342–351

    Article  Google Scholar 

  93. Bellusci M, La Barbera A, Padella F, et al. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process. Int J Nanomed, 2014, 9: 1919–1929

    Google Scholar 

  94. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26: 3995–4021

    Article  Google Scholar 

  95. Mahmoudi M, Hofmann H, Rothen-Rutishauser B, et al. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev, 2012, 112: 2323–2338

    Article  Google Scholar 

  96. Zhang YQ, Dringen R, Petters C, et al. Toxicity of dimercaptosuccinate-coated and un-functionalized magnetic iron oxide nanoparticles towards aquatic organisms. Environ Sci-Nano, 2016, 3: 754–767

    Article  Google Scholar 

  97. Zhu MT, Feng WY, Wang B, et al. Comparative study of pulmonary responses to nano-and submicron-sized ferric oxide in rats. Toxicology, 2008, 247: 102–111

    Article  Google Scholar 

  98. Di Bona KR, Xu Y, Ramirez PA, et al. Surface charge and dosage dependent potential developmental toxicity and biodistribution of iron oxide nanoparticles in pregnant CD-1 mice. Reprod Toxicol, 2014, 50: 36–42

    Article  Google Scholar 

  99. Hanini J, Schmitt J, Kacem K, et al. Evaluation of iron oxide nanoparticle biocompatibility. Int J Nanomedicine, 2011, 6: 787–794

    Google Scholar 

  100. Sun T, Yan Y, Zhao Y, et al. Copper oxide nanoparticles induce autophagic cell death in A549 cells. PLoS ONE, 2012, 7: e43442

    Article  Google Scholar 

  101. Dong E, Wang Y, Yang ST, et al. Toxicity of nano gamma alumina to neural stem cells. J Nanosci Nanotech, 2011, 11: 7848–7856

    Article  Google Scholar 

  102. Chattopadhyay S, Dash SK, Tripathy S, et al. Toxicity of cobalt oxide nanoparticles to normal cells an in vitro and in vivo study. Chemico-Biol Interactions, 2015, 226: 58–71

    Article  Google Scholar 

  103. Ates M, Demir V, Arslan Z, et al. Toxicity of engineered nickel oxide and cobalt oxide nanoparticles to Artemia salina in seawater. Water Air Soil Pollut, 2016, 227: 70

    Article  Google Scholar 

  104. Tedesco S, Doyle H, Blasco J, et al. Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquatic Toxicol, 2010, 100: 178–186

    Article  Google Scholar 

  105. Zhuang W, Gao X. Methods, mechanisms and typical bio-indicators of engineered nanoparticle ecotoxicology: an overview. Clean Soil Air Water, 2014, 42: 377–385

    Article  Google Scholar 

  106. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 2012, 24: 981–990

    Article  Google Scholar 

  107. Huang YW, Wu CH, Aronstam RS. Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials, 2010, 3: 4842–4859

    Article  Google Scholar 

  108. Mocan T, Clichici S, Agoşton-Coldea L, et al. Implications of oxidative stressmechanisms in toxicity of nanoparticles. Acta Physiol Hung, 2010, 97: 247–255

    Article  Google Scholar 

  109. Risom L, Møller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res-Fund Mol M, 2005, 592: 119–137

    Article  Google Scholar 

  110. Xiong D, Fang T, Yu L, et al. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ, 2011, 409: 1444–1452

    Article  Google Scholar 

  111. Knaapen AM, Borm PJA, Albrecht C, et al. Inhaled particles and lung cancer. Part A:mechanisms. Int J Cancer, 2004, 109: 799–809

    Article  Google Scholar 

  112. Horie M, Komaba LK, Kato H, et al. Evaluation of cellular influences induced by stable nanodiamond dispersion the cellular influences of nanodiamond are small. Diamond RelatedMater, 2012, 24: 15–24

    Article  Google Scholar 

  113. Sharma V, Anderson D, Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggeredmitochondriamediated apoptosis in human liver cells (HepG2). Apoptosis, 2012, 17: 852–870

    Article  Google Scholar 

  114. Li N, Duan Y, Hong M, et al. Spleen injury and apoptotic pathway in mice caused by titanium dioxide nanoparticules. Toxicol Lett, 2010, 195: 161–168

    Article  Google Scholar 

  115. Cho Y, Gorina S, Jeffrey PD, et al. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science, 1994, 265: 346–355

    Article  Google Scholar 

  116. Basu A. The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. MolHuman Reprod, 1998, 4: 1099–1109

    Google Scholar 

  117. Haldar S, Negrini M, Monne M, et al. Down-regulation of bcl-2 by p53 in breast cancer cells. Cancer Res, 1994, 54: 2095–2097

    Google Scholar 

  118. Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science, 2004, 303: 1010–1014

    Article  Google Scholar 

  119. Antonsson B. Inhibition of Bax channel-forming activity by Bcl-2. Science, 1997, 277: 370–372

    Article  Google Scholar 

  120. Song MF, Li YS, Kasai H, et al. Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. J Clin Biochem Nutr, 2012, 50: 211–216

    Article  Google Scholar 

  121. Zaffaroni N, Pannati M, Diadone MG. Survivin as a target for new anticancer interventions. J Cellular Mol Med, 2005, 9: 360–372

    Article  Google Scholar 

  122. Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med, 2005, 258: 479–517

    Article  Google Scholar 

  123. Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticleinduced oxidative stress and toxicity. Bio Med Res Int, 2013, 2013: 1–15

    Google Scholar 

  124. Lankoff A, Sandberg WJ, Wegierek-Ciuk A, et al. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells. Toxicol Lett, 2012, 208: 197–213

    Article  Google Scholar 

  125. Prasad RY, Simmons SO, Killius MG, et al. Cellular interactions and biological responses to titanium dioxide nanoparticles in HepG2 and BEAS-2B cells: role of cell culturemedia. EnvironMol Mutagen, 2014, 55: 336–342

    Article  Google Scholar 

  126. Li L, Jiang LL, Zeng Y, et al. Toxicity of superparamagnetic iron oxide nanoparticles: research strategies and implications for nanomedicine. Chin Phys B, 2013, 22: 127503

    Article  Google Scholar 

  127. Rousk J, Ackermann K, Curling SF, et al. Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS ONE, 2012, 7: e34197

    Article  Google Scholar 

  128. Zhang ZY, Xiong HM. Photoluminescent ZnO nanoparticles and their biological applications. Materials, 2015, 8: 3101–3127

    Article  Google Scholar 

  129. Franklin NM, Rogers NJ, Apte SC, et al. Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol, 2007, 41: 8484–8490

    Article  Google Scholar 

  130. Adrain C, Creagh EM, Martin SJ. Defying death: showing Bcl-2 the way home. Nat Cell Biol, 2003, 5: 9–11

    Article  Google Scholar 

  131. Zhao J, Bowman L, Zhang X, et al. Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways. J Toxicol Environ Health A, 2009, 72: 1141–1149

    Article  Google Scholar 

  132. Cui Y, Liu H, Zhou M, et al. Signaling pathway of inflammatory responses in themouse liver caused by TiO2 nanoparticles. J Biomed Mater Res, 2011, 96A: 221–229

    Article  Google Scholar 

  133. Tong T, Fang K, Thomas SA, et al. Chemical interactions between nano-ZnO and nano-TiO2 in a natural aqueous medium. Environ Sci Technol, 2014, 48: 7924–7932

    Article  Google Scholar 

  134. Tong T, Wilke CM, Wu J, et al. Combined toxicity of nano-ZnOand nano-TiO2: from single-to multinanomaterial systems. Environ Sci Technol, 2015, 49: 8113–8123

    Article  Google Scholar 

  135. Wang Y, Yuan L, Yao C, et al. Caseinophosphopeptides cytoprotect human gastric epithelium cells against the injury induced by zinc oxide nanoparticles. RSC Adv, 2014, 4: 42168–42174

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21371115, 11025526, 40830744, 41073073, and 21101104), the National Basic Research Program of China (2011CB933402), the Innovation Program of ShanghaiMunicipal Education Commission (14YZ025), and the Program for Innovative Research Team in University (IRT13078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghong Wu  (吴明红).

Additional information

Yanli Wang is now working at the Institute of Nanochemistry and Nanobiology of Shanghai University as an associate professor since 2012. She obtained her PhD degree in environmental engineering from Shanghai University in 2010. Her research interests include bio-effects and safety evaluation of nanomaterials and their application in bio-imaging and cancer therapy.

Minghong Wu obtained her PhD degree from Shanghai Institute of Applied Physics of Chinese Academy of Sciences in 1999. She is the National outstanding youth and Yangtze River scholar of China. Based on her scientific contribution, she was selected as the Russian Academy of foreign academicians of Russian Academy of Engineering in 2008 and Russian Academy of Science in 2015. Her research interests mainly focus on bio-effects and safety evaluation of nanomaterials and environmental pollution analysis and control.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ding, L., Yao, C. et al. Toxic effects of metal oxide nanoparticles and their underlying mechanisms. Sci. China Mater. 60, 93–108 (2017). https://doi.org/10.1007/s40843-016-5157-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-016-5157-0

Keywords

Navigation