Skip to main content
Log in

The potential for skin irritation, phototoxicity, and sensitization of ZnO nanoparticles

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

In spite of widely use of zinc oxide (ZnO) nanoparticles (NPs) in cosmetic industry and in our daily lives, insufficient studies have evaluated the potential of their toxic response. This study was conducted to investigate the potential of cytotoxicity induced by ZnO NPs, especially influences of the surface charge and different particle size. Assessment of potential of skin irritation was estimated using human skin equivalent model (HSEM), and an animal model. And the evaluation of skin phototoxicity was tested by the 3T3 neutral red uptake test. Lastly, the potential of skin sensitization was evaluated by a local lymph node assay (LLNA). The results from this study demonstrated that ZnO NPs are not dermal sensitizers and do not induce skin irritation. But they may produce phototoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, W. T. Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102:1–7 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Jain, T. K., Morales, M. A., Sahoo, S. K., Leslie-Pelecky, D. L. & Labhasetwar, V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2:194–205 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. McNeil, S. E. Nanotechnology for the biologist. J Leukoc Biol 78:585–594 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Wagner, V., Dullaart, A., Bock, A. K. & Zweck, A. The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Nohynek, G. J., Dufour, E. K. & Roberts, M. S. Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Physiol 21:136–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Nohynek, G. J., Lademann, J., Ribaud, C. & Roberts, M. S. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251–277 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Cross, S. E. et al. Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20:148–154 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Jeong, S. H. et al. Assessment of penetration of quantum dots through in vitro and in vivo human skin using the human skin equivalent model and the tape stripping method. Biochem Biophys Res Commun 394:612–615 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Peters, K., Unger, R. E., Kirkpatrick, C. J., Gatti, A. M. & Monari, E. Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med 15:321–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Dussert, A. S., Gooris, E. & Hemmerle, J. Characterization of the mineral content of a physical sunscreen emulsion and its distribution onto human stratum corneum. Int J Cosmet Sci 19:119–129 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, S. H., Kwon, D. & Yoon, T. H. An optimized dispersion of manufactured nanomaterials forin vitro cytotoxicity assays. ToxEHS 2:207–213 (2010).

    Google Scholar 

  14. Kim, Y.-J., Yu, M., Park, H.-O. & Yang, S.I. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by silica nanomaterials in human neuronal cell line. Mol Cell Toxicol 6:336–343 (2010).

    Article  CAS  Google Scholar 

  15. Hanley, C. et al. The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res Lett 4:1409–1420 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Hanley, C. et al. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19:295103 (2008).

    Article  PubMed  Google Scholar 

  17. Takeyoshi, M., Yamasaki, K., Yakabe, Y., Takatsuki, M. & Kimber, I. Development of non-radio isotopic endpoint of murine local lymph node assay based on 5-bromo-2′-deoxyuridine (BrdU) incorporation. Toxicol Lett 119:203–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Brown, D. M., Wilson, M. R., MacNee, W., Stone, V. & Donaldson, K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Oberdorster, G., Oberdorster, E. & Oberdorster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Hu, X., Cook, S., Wang, P. & Hwang, H. M. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ 407:3070–3072 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, L., McCrate, J. M., Lee, J. C. & Li, H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22:105708 (2011).

    Article  PubMed  Google Scholar 

  22. Harush-Frenkel, O. et al. A safety and tolerability study of differently-charged nanoparticles for local pulmonary drug delivery. Toxicol Appl Pharmacol 246:83–90 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Schaeublin, N. M. et al. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3:410–420 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Park, Y. H. et al. Assessment of dermal toxicity of nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model. Toxicology 267:178–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Roguet, R. Use of skin cell cultures for in vitro assessment of corrosion and cutaneous irritancy. Cell Biol Toxicol 15:63–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Roberts, J. E., Wielgus, A. R., Boyes, W. K., Andley, U. & Chignell, C. F. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells. Toxicol Appl Pharmacol 228:49–58 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Wielgus, A. R., Zhao, B., Chignell, C. F., Hu, D. N. & Roberts, J. E. Phototoxicity and cytotoxicity of fullerol in human retinal pigment epithelial cells. Toxicol Appl Pharmacol 242:79–90 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Larsen, S. T., Roursgaard, M., Jensen, K. A. & Nielsen, G. D. Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol Toxicol 106:114–117 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Wook Son.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, Y.S., Lee, E.Y., Park, YH. et al. The potential for skin irritation, phototoxicity, and sensitization of ZnO nanoparticles. Mol. Cell. Toxicol. 8, 171–177 (2012). https://doi.org/10.1007/s13273-012-0021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-012-0021-9

Keywords

Navigation