Skip to main content
Log in

Toxicity of Engineered Nickel Oxide and Cobalt Oxide Nanoparticles to Artemia salina in Seawater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, the effects of exposure to engineered nickel oxide (NiO 40–60 nm) and cobalt oxide (CoO <100 nm) nanoparticles (NP) were investigated on Artemia salina. Aggregation and stability of the aqueous NP suspensions were characterized by DLS and TEM. Acute exposure was conducted on nauplii (larvae) in seawater in a concentration range from 0.2 to 50 mg/L NPs for 24 h (short term) and 96 h (long term). The hydrodynamic diameters of NiO and CoO NPs in exposure medium were larger than those estimated by TEM. Accumulation rate of NiO NPs were found to be four times higher than that of CoO NPs under the same experimental conditions. Examinations under phase contrast microscope showed that the nanoparticles accumulated in the intestine of Artemia, which increased with increasing exposure concentration. Differences were observed in the extent of dissolution of the NPs in the seawater. The CoO NPs dissolved significantly while NiO NPs were relatively more stable. Oxidative stress induced by the NP suspensions was measured by malondialdehyde assay. Suspensions of NiO NPs caused higher oxidative stress on nauplii than those of CoO NPs. The results imply that CoO and NiO NPs exhibit toxicity on Artemia (e.g., zooplankton) that is an important source of food in aquatic food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams, L. K., Lyon, D. Y., & Alvarez, P. J. J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 40, 3527–3532.

    Article  CAS  Google Scholar 

  • Ahamed, M., Ali, D., Alhadlaq, H. A., & Akhtar, M. J. (2013). Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere, 93, 2514–2522.

    Article  CAS  Google Scholar 

  • Arslan, Z., Ates, M., McDuffy, W., Agachan, M. S., Farah, I. O., Yu, W. W., & Bednar, A. J. (2011). Probing metabolic stability of CdSe nanoparticles: alkaline extraction of free cadmium from liver and kidney samples of rats exposed to CdSe nanoparticles. Journal of Hazardous Materials, 192, 192–199.

    CAS  Google Scholar 

  • Aruoja, V., Dubourguier, H. C., Kasemets, K., & Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. The Science of the Total Environment, 407, 1461–8.

    Article  CAS  Google Scholar 

  • Ates, M., Daniels, J., Arslan, Z., & Farah, I. O. (2013a). Uptake and toxicity of titanium dioxide (TiO2) nanoparticles to brine shrimp (Artemia salina). Environmental Monitoring and Assessment, 185, 3339–3348.

    Article  CAS  Google Scholar 

  • Ates, M., Daniels, J., Arslan, Z., Farah, I. O., & Félix-Rivera, H. (2013b). Comparative evaluation of impact of Zn and ZnO nanoparticles on Brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environmental Science: Processes & Impacts, 15, 225–233.

    CAS  Google Scholar 

  • Ates M, Demir V, Adiguzel R, Arslan Z. (2013c). Bioaccumulation, subacute toxicity, and tissue distribution of engineered titanium dioxide nanoparticles in goldfish (Carassius auratus). Journal of Nanomaterials, doi.org/10.1155/2013/460518.

  • Ates, M., Demir, V., Arslan, Z., Daniels, J., Farah, I. O., & Bogatu, C. (2015a). Evaluation of alpha and gamma aluminum oxide nanoparticle accumulation, toxicity and depuration in Artemia salina larvae. Environmental Toxicology, 30, 109–118.

    Article  CAS  Google Scholar 

  • Ates, M., Daniels, J., Arslan, Z., & Farah, I. O. (2015b). Comparative study of accumulation, toxicity and trophic transfer of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish (Carassius auratus). Environmental Toxicology, 30, 119–128.

    Article  CAS  Google Scholar 

  • Baker, T. J., Tyler, C. R., & Galloway, T. S. (2014). Impacts of metal and metal oxide nanoparticles on marine organisms. Environmental Pollution, 186, 257–271.

    Article  CAS  Google Scholar 

  • Chattopadhyay, S., Dash, S. K., Tripathy, S., Das, B., Mandal, D., Pramanik, P., & Roy, S. (2015). Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chemico-Biological Interactions, 226, 58–71.

    Article  CAS  Google Scholar 

  • Clogston, J. D., & Patri, A. K. (2011). Zeta potential measurement. Methods in Molecular Biology, 697, 63–70.

    Article  CAS  Google Scholar 

  • Fairbairn, E. A., Keller, A. A., Madler, L., Zhou, D., Pokhrel, S., & Cherr, G. N. (2011). Metal oxide nanomaterials in seawater: linking physicochemical characteristics with biological response in sea urchin development. Journal of Hazardous Materials, 192, 1565–1571.

    Article  CAS  Google Scholar 

  • Gong, N., Shao, K., Feng, W., Lin, Z., Liang, C., & Sun, Y. (2011). Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris.

    Google Scholar 

  • Huber, D. (2005). Synthesis, properties, and applications of iron nanoparticles. Small, 1, 482–501.

    Article  CAS  Google Scholar 

  • Kovrižnych, J. A., Sotníková, R., Zeljenková, D., Rollerová, E., Szabová, E., & Wimmerová, S. (2013). Acute toxicity of 31 diff erent nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages—comparative study. Interdisciplinary Toxicology, 6, 67–73.

    Google Scholar 

  • Kovrižnych, J. A., Sotníková, R., Zeljenková, D., Rollerová, E., & Szabová, E. (2014). Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio. Interdisciplinary Toxicology, 7(1), 23–26.

    Google Scholar 

  • Liu, X., Qiu, G., & Li, X. (2005). Shape-controlled synthesis and properties of uniform spinel cobalt oxide nanotubes. Nanotechnology, 16, 3035–3040.

    Article  CAS  Google Scholar 

  • Miller, R. J., Lenihan, H. S., Muller, E. B., Tseng, N., Hanna, S. K., & Keller, A. A. (2010). Impacts of metal oxide nanoparticles on marine phytoplankton. Environmental Science & Technology, 44, 7329–7334.

    Article  CAS  Google Scholar 

  • OECD. (2004). Guideline for testing of chemicals—Daphnia sp. acute immobilisation test 202.

    Book  Google Scholar 

  • Oukarroum, A., Barhoumi, L., Samadani, M., & Dewez, D. (2015). Toxic effects of nickel oxide bulk and nanoparticles on the aquatic plant Lemna gibba L. BioMed Research International, 2015, 1–7. doi:10.1155/2015/501326.

    Article  Google Scholar 

  • Oyabu, T., Ogami, A., Morimoto, Y., Shimada, M., Lenggoro, W., Okuyama, K., & Tanaka, I. (2007). Biopersistence of inhaled nickel oxide nanoparticles in rat lung. Inhalation Toxicology, 19(Suppl 1), 55–58.

    Article  CAS  Google Scholar 

  • Papis, E., Rossi, F., Raspanti, M., Dalle-Donne, I., Colombo, G., Milzani, A., Bernardini, G., & Gornati, R. (2009). Engineered cobalt oxide nanoparticles readily enter cells. Toxicology Letters, 189, 253–259.

    Article  CAS  Google Scholar 

  • Rao, K. V., & Sunandana, C. S. (2008). Effect of fuel to oxidizer ratio on the structure, micro structure and EPR of combustion synthesized NiO nanoparticles. Journal of Nanoscience & Nanotechnology, 8, 4247–4253.

    Article  CAS  Google Scholar 

  • Rebello, V., Shaikh, S., & Desa, P. V. (2010). Toxicity of cobalt oxide nanoparticles. International Conference on Environmental Engineering and Applications (ICEEA 2010) (pp. 195–199).

    Book  Google Scholar 

  • Salimi, A., Sharifi, E., Noorbakhsh, A., & Soltanian, S. (2007). Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nanoscale islands of nickel oxide. Biophysical Chemistry, 125, 540–548.

    Article  CAS  Google Scholar 

  • Weber, C. I. (1993). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms (4th ed., p. 167). Cincinnati, OH: EPA/600/4-90/027F. Environmental Monitoring Systems Laboratory.

    Google Scholar 

  • Wiesner, M. R., Lowry, G. V., Alvarez, P., Dionysiou, D., & Biswas, P. (2006). Assessing the risks of manufactured nanomaterials. Environmental Science & Technology, 40, 4336–4345.

    Article  CAS  Google Scholar 

  • Zhao, Y., Meng, H., Chen, Z., Feng, Z., & Chai, Z. (2007). Dependence of nanotoxicity on nanoscale characteristics and strategies for reducing and eliminating nanotoxicity. In Y. Zhao & N. H. Singh (Eds.), Nanotoxicology (pp. 265–280). Valencia, CA, USA: American Scientific Publisher.

    Google Scholar 

Download references

Acknowledgments

This project is funded in part by grants from the National Institutes of Health (NIH) through Research Centers in Minority Institutions (RCMI) Program (Grant No: G12RR013459) and the U.S. Department of Defense (DOD) through the Engineer, Research and Development Center (Vicksburg, MS); (Contract #W912HZ-10-2-0045). The views expressed herein are those of authors and do not necessarily represent the official views of the funding agencies, and any of their sub-agencies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Veysel Demir or Zikri Arslan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, M., Demir, V., Arslan, Z. et al. Toxicity of Engineered Nickel Oxide and Cobalt Oxide Nanoparticles to Artemia salina in Seawater. Water Air Soil Pollut 227, 70 (2016). https://doi.org/10.1007/s11270-016-2771-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2771-9

Keywords

Navigation