Skip to main content
Log in

The Existence of a Global Attractor for the Forced Critical Surface Quasi-Geostrophic Equation in \(L^2\)

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We prove that the critical surface quasi-geostrophic equation driven by a force f possesses a compact global attractor in \(L^2(\mathbb T^2)\) provided \(f\in L^p(\mathbb T^2)\) for some \(p>2\). First, the De Giorgi method is used to obtain uniform \(L^\infty \) estimates on viscosity solutions. Even though this does not provide a compact absorbing set, the existence of a compact global attractor follows from the continuity of solutions, which is obtained by estimating the energy flux using the Littlewood–Paley decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehrender Mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  2. Ball, J.M.: Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equations. J. Nonlinear Sci. 7, 475–502, (1997). Erratum: J. Nonlinear Sci. 8, 233, (1998)

  3. Caffarelli, L.A., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. (2) 171(3), 1903–1930 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheskidov, A.: Global attractors of evolutionary systems. J. Dyn. Differ. Equ. 21, 249–268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21, 1233–1252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheskidov, A., Foias, C.: On global attractors of the 3D Navier–Stokes equations. J. Differ. Equ. 231(2), 714–754 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Constantin, P., Córdoba, D., Wu, J.: On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 50(Special Issue), 97–107 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Constantin, P., Majda, A.J., Tabak, E.: Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7(6), 1495–1533 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Constantin, P., Tarfulea, A., Vicol, V.: Absence of anomalous dissipation of energy in forced two dimensional fluid equations. arXiv:1305.7089, (2013)

  10. Constantin, P., Tarfulea, A., Vicol, V.: Long time dynamics of forced critical SQG. arXiv: 1308.0640, (2013)

  11. Constantin, P., Vicol, V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal. 22(5), 1289–1321 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30(5), 937–948 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249(3), 511–528 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Dong, H.: Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness. Discrete Contin. Dyn. Syst. 26(4), 1197–1211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dong, H., Du, D.: Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete Contin. Dyn. Syst. 21(4), 1095–1101 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Friedlander, S., Pavlović, N., Vicol, V.: Nonlinear instability for the critically dissipative quasi-geostrophic equation. Commun. Math. Phys. 292(3), 797–810 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250, 2nd edn. Springer, New York (2009)

    Book  Google Scholar 

  18. Kiselev, A., Nazarov, F.: A variation on a theme of Caffarelli and Vasseur. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370(Kraevye Zadachi Matematicheskoi Fiziki i Smezhnye Voprosy Teorii Funktsii. 40) 220, 58–72 (2009)

    MATH  Google Scholar 

  19. Kiselev, A., Nazarov, F.: Global regularity for the critical dispersive dissipative surface quasi-geostrophic equation. Nonlinearity 23(3), 549–554 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167(3), 445–453 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Pedlosky, J.: Geostrophical Fluid Dynamics. Springer, New York (1987)

    MATH  Google Scholar 

  22. Rosa, R.M.S.: Asymptotic regularity condition for the strong convergence to-wards weak limit sets and weak attractors of the 3D Navier–Stokes equations. J. Differ. Equ. 229, 257–269 (2006)

    Article  ADS  MATH  Google Scholar 

  23. Schonbek, M.E., Schonbek, T.: Asymptotic behavior to dissipative quasi-geostrophic equations. SIAM J. Math. Anal. 35(2), 357–375 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schonbek, M.E., Schonbek, T.: Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. J. Discrete Contin. Dyn. Syst. Ser. A 13(5), 1277–1304 (2005)

  25. Silvestre, L., Vicol, V.: Hölder continuity for a drift-diffusion equation with pressure. Ann. lInstit. Henri Poincare (C) Non Linear Anal. 20(4), 637–652 (2012)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Cheskidov.

Additional information

Communicated by R. Shvydkoy

Submission Date: October 26, 2015.

The work of Alexey Cheskidov was partially supported by NSF Grant DMS-1108864.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheskidov, A., Dai, M. The Existence of a Global Attractor for the Forced Critical Surface Quasi-Geostrophic Equation in \(L^2\) . J. Math. Fluid Mech. 20, 213–225 (2018). https://doi.org/10.1007/s00021-017-0324-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-017-0324-7

Navigation