Skip to main content
Log in

A New Bernstein’s Inequality and the 2D Dissipative Quasi-Geostrophic Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show a new Bernstein’s inequality which generalizes the results of Cannone-Planchon, Danchin and Lemarié-Rieusset. As an application of this inequality, we prove the global well-posedness of the 2D quasi-geostrophic equation with the critical and super-critical dissipation for the small initial data in the critical Besov space, and local well-posedness for the large initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergh, J., Löfstrom, J.: Interpolation spaces, An Introduction. New York: Springer-Verlag, 1976

  2. Bony J.-M. (1981). Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14: 209–246

    MATH  MathSciNet  Google Scholar 

  3. Cannone, M., Planchon, F.: More Lyapunov functions for the Navier-Stokes equations, in Navier-Stokes equations: Theory and Numerical Methods. R. Salvi, ed., Lecture Notes in Pure and Applied Mathematics, 223, New York-Oxford: 2001, pp. 19–26

  4. Chae D. (2003). The quasi-geostrophic equation in the Triebel-Lizorkin spaces. Nonlinearity 16: 479–495

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Chae D. and Lee J. (2003). Global well-posedness in the super-critical dissipative quasi-geostrophic equations. Commun. Math. Phys. 233: 297–311

    MATH  ADS  MathSciNet  Google Scholar 

  6. Chemin, J.-Y.: Perfect incompressible fluids. New York: Oxford University Press, 1998

    MATH  Google Scholar 

  7. Chemin J.-Y. and Lerner N. (1995). Flot de champs de vecteurs non lipschitziens et êquations de Navier-Stokes. J. Differ. Eqs. 121: 314–328

    Article  MATH  MathSciNet  Google Scholar 

  8. Constantin P., Majda, A. J. and Tabak E. (1994). Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7: 1495–1533

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Constantin P. and Wu J. (1999). Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30: 937–948

    Article  MATH  MathSciNet  Google Scholar 

  10. Constantin, P., Cordoba, D., Wu, J.: On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 50, Special Issue, 97–107 (2001)

  11. Córdoba D. (1998). Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. of Math. 148: 1135–1152

    Article  MATH  MathSciNet  Google Scholar 

  12. Córdoba D. and Fefferman C. (2002). Growth of solutions for QG and 2D Euler equations. J. Amer. Math. Soc. 15: 665–670

    Article  MATH  MathSciNet  Google Scholar 

  13. Córdoba A. and Córdoba D. (2004). A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249: 511–528

    Article  MATH  ADS  Google Scholar 

  14. Danchin R. (1997). Poches de tourbillon visqueuses. J. Math. Pures Appl. 76(9): 609–647

    MATH  MathSciNet  Google Scholar 

  15. Danchin R. (2000). Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141: 579–614

    Article  MATH  MathSciNet  Google Scholar 

  16. Danchin R. (2003). Density-dependent incompressible viscous fluids in critical spaces. Proc. Roy. Soc. Edinburgh Sect. A 133: 1311–1334

    MATH  MathSciNet  Google Scholar 

  17. Ju N. (2004). Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Commun. Math. Phys. 251: 365–376

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Ju N. (2005). The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Commun. Math. Phys. 255: 161–181

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Lemarié-Rieusset, P.G.: Recent developments in the Navier-stokes problem. London: Chapman & Hall/CRC, 2002

  20. Miura, H.: Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space. Commun. Math. Phys 267, no. 1, 141–157 (2006)

    Google Scholar 

  21. Pedlosky, J.: Geophysical Fluid Dynamics. New York: Springer-Verlag, 1987

    MATH  Google Scholar 

  22. Teman, R.: Navier-Stokes equations, Theory and Numerical analysis. New York: North-Holland, 1979

  23. Triebel, H.: Theory of Function Spaces. Monograph in Mathematics, Vol.78, Basel: Birkhauser Verlag, 1983

  24. Wu J. (2004). Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces. SIAM J. Math. Anal. 36: 1014–1030

    Article  MathSciNet  Google Scholar 

  25. Wu J. (2005). The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation. Nonlinearity 18: 139–154

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Wu J. (2006). Lower bounds for an integral involving fractional laplacians and the generalized Navier-Stokes equations in Besov spaces. Commun. Math. Phys. 263: 803–831

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changxing Miao.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Q., Miao, C. & Zhang, Z. A New Bernstein’s Inequality and the 2D Dissipative Quasi-Geostrophic Equation. Commun. Math. Phys. 271, 821–838 (2007). https://doi.org/10.1007/s00220-007-0193-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0193-7

Keywords

Navigation