Skip to main content
Log in

Decoupled Sliding Mode Control of Underactuated Nonlinear Systems Using a Fuzzy Brain Emotional Cerebellar Model Control System

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper proposes a new intelligent control algorithm for the decoupling control of a class of single-input fourth-order underactuated nonlinear systems. By introducing an intermediate variable, a coupling sliding surface of two second-order sliding surfaces can be defined. Then, by applying a single-input fuzzy brain emotional cerebellar model articulation controller (FBECMAC)-based control system, the decoupling control of underactuated systems can be achieved with favorable transient response. The proposed control system consists of an FBECMAC and a fuzzy compensator. The FBECMAC is used as the main controller to approach an ideal controller to achieve desired control performance, and the fuzzy compensator is used to eliminate the approximation error to achieve system stability. The brain emotional model has an amygdala cortex and an orbitofrontal cortex, so the FBECMAC contains two neural networks; the amygdala cortex is a decision-making neural network and the orbitofrontal cortex is an emotional neural network. The proposed FBECMAC is adaptive and can adjust the parameters to achieve efficient control performance. The fuzzy compensator can also adjust its singleton fuzzy value to satisfy system stability. Finally, the FBECMAC-based decoupled sliding mode control system is applied to control one degree underactuated systems, such as a bridge crane and an aeroelastic system. Simulation results have validated the effectiveness of the proposed control approach. The proposed method can be applied to the practical systems if the computation time is acceptable for these practical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu, Y., Yu, H.: A survey of underactuated mechanical systems. IET Control Theory Appl. 7(7), 921–935 (2013)

    Article  MathSciNet  Google Scholar 

  2. Spong, M.W.: Underactuated mechanical systems. In: Control Problems in Robotics and Automation, pp. 135–150. Springer-Verlag, London, (1998)

  3. Fantoni, I., Lozano, R., Lozano, R.: Non-linear control for underactuated mechanical systems. Springer Science & Business Media, Berlin (2002)

    Book  MATH  Google Scholar 

  4. Arai, H., Tachi, S.: Position control of manipulator with passive joints using dynamic coupling. IEEE Trans. Robot. Autom. 7(4), 528–534 (1991)

    Article  Google Scholar 

  5. Baglioni, P., Fisackerly, R., Gardini, B., Gianfiglio, G., Pradier, A.L., Santovincenzo, A., Vago, J.L., van Winnendael, M.: The Mars exploration plans of ESA. IEEE Robot. Autom. Mag. 13(2), 83–89 (2006)

    Article  Google Scholar 

  6. Utkin, V.I.: Sliding modes in control and optimization. Springer Science & Business Media, New York (2013)

    Google Scholar 

  7. Åström, K.J., Wittenmark, B.: Adaptive Control. Courier Corporation, Addison-Wesley, Massachusetts (2013)

    MATH  Google Scholar 

  8. Lo, J.-C., Kuo, Y.-H.: Decoupled fuzzy sliding-mode control. IEEE Trans. Fuzzy Syst. 6(3), 426–435 (1998)

    Article  Google Scholar 

  9. Yorgancioglu, F., Komurcugil, H.: Decoupled sliding-mode controller based on time-varying sliding surfaces for fourth-order systems. Expert Syst. Appl. 37(10), 6764–6774 (2010)

    Article  Google Scholar 

  10. She, J., Zhang, A., Lai, X., Wu, M.: Global stabilization of 2-DOF underactuated mechanical systems—an equivalent-input-disturbance approach. Nonlinear Dyn. 69(1), 495–509 (2012)

    Article  Google Scholar 

  11. Huang, J., Ri, S., Fukuda, T., Wang, Y.: A disturbance observer based sliding mode control for a class of underactuated robotic system with mismatched uncertainties. IEEE Trans. Autom. Control 64(6), 2480–2487 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ovalle, L.R., Rios, H., Llama, M.A.: Continuous sliding-mode control for underactuated systems: relative degree one and two. Control. Eng. Pract. 90, 342–357 (2019)

    Article  MATH  Google Scholar 

  13. Xie, X., Yue, D., Peng, C.: Relaxed real-time scheduling stabilization of discrete-time Takagi-Sugeno fuzzy systems via an alterable-weights-based ranking switching mechanism. IEEE Trans. Fuzzy Syst. 26(6), 3808–3819 (2018)

    Article  Google Scholar 

  14. Huynh, T.-T., Le, T.-L., Lin, C.-M.: Self-organizing recurrent wavelet fuzzy neural network-based control system design for MIMO uncertain nonlinear systems using TOPSIS method. Int. J. Fuzzy Syst. 21(2), 468–487 (2019)

    Article  Google Scholar 

  15. Huynh, T.-T., Lin, C.-M., Le, T.-L., Cho, H.-Y., Pham, T.-T.T., Chao, F.: A new self-organizing fuzzy cerebellar model articulation controller for uncertain nonlinear systems using overlapped Gaussian membership functions. IEEE Trans. Industr. Electron. 67(11), 9671–9682 (2019)

    Article  Google Scholar 

  16. Lin, C.-M., Mon, Y.-J.: Decoupling control by hierarchical fuzzy sliding-mode controller. IEEE Trans. Control Syst. Technol. 13(4), 593–598 (2005)

    Article  Google Scholar 

  17. Lin, C.-M., Chin, W.-L.: Adaptive decoupled fuzzy sliding-mode control of a nonlinear aeroelastic system. J. Guid. Control. Dyn. 29(1), 206–209 (2006)

    Article  Google Scholar 

  18. Hwang, C.-L., Chiang, C.-C., Yeh, Y.-W.: Adaptive fuzzy hierarchical sliding-mode control for the trajectory tracking of uncertain underactuated nonlinear dynamic systems. IEEE Trans. Fuzzy Syst. 22(2), 286–299 (2013)

    Article  Google Scholar 

  19. Wu, T.-S., Karkoub, M., Wang, H., Chen, H.-S., Chen, T.-H.: Robust tracking control of MIMO underactuated nonlinear systems with dead-zone band and delayed uncertainty using an adaptive fuzzy control. IEEE Trans. Fuzzy Syst. 25(4), 905–918 (2016)

    Article  Google Scholar 

  20. Hsu, C.-F., Lin, C.-M., Chen, T.-Y.: Neural-network-identification-based adaptive control of wing rock motions. IEE Proc.-Control Theory Appl. 152(1), 65–71 (2005)

    Article  Google Scholar 

  21. Hung, L.-C., Chung, H.-Y.: Decoupled sliding-mode with fuzzy-neural network controller for nonlinear systems. Int. J. Approx. Reason. 46(1), 74–97 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, C., Li, Z., Cui, R., Xu, B.: Neural network-based motion control of an underactuated wheeled inverted pendulum model. IEEE Trans. Neural Netw. Learn. Syst. 25(11), 2004–2016 (2014)

    Article  Google Scholar 

  23. LeDoux, J.E.: The amygdala: neurobiological aspects of emotion, pp. 339–351. Wiley-Liss, New York (1992)

    Google Scholar 

  24. Moren, J.: Emotion and learning: a computational model of the amygdala. Cybern. Syst. 32(6), 611–636 (2001)

    Article  MATH  Google Scholar 

  25. Lucas, C., Shahmirzadi, D., Sheikholeslami, N.: Introducing BELBIC: brain emotional learning based intelligent controller. Intell. Autom. Soft Comput. 10(1), 11–21 (2004)

    Article  Google Scholar 

  26. Soreshjani, M.H., Markadeh, G.A., Daryabeigi, E., Abjadi, N.R., Kargar, A.: Application of brain emotional learning-based intelligent controller to power flow control with thyristor-controlled series capacitance. IET Gener. Transm. Distrib. 9(14), 1964–1976 (2015)

    Article  Google Scholar 

  27. Rahman, M.A., Milasi, R.M., Lucas, C., Araabi, B.N., Radwan, T.S.: Implementation of emotional controller for interior permanent-magnet synchronous motor drive. IEEE Trans. Ind. Appl. 44(5), 1466–1476 (2008)

    Article  Google Scholar 

  28. Wu, Q., Lin, C.-M., Fang, W., Chao, F., Yang, L., Shang, C., Zhou, C.: Self-organizing brain emotional learning controller network for intelligent control system of mobile robots. IEEE Access 6, 59096–59108 (2018)

    Article  Google Scholar 

  29. Lin, C.-M., Nguyen, H.-B., Huynh, T.-T.: A new self-organizing double function-link brain emotional learning controller for MIMO nonlinear systems using sliding surface. IEEE Access 9, 73826–73842 (2021)

    Article  Google Scholar 

  30. Huynh, T.T., Lin, C.-M., Le, T.L., Nguyen, N.P., Hong, S.K., Chao, F.: Wavelet interval type-2 fuzzy quad-function-link brain emotional control algorithm for the synchronization of 3D nonlinear chaotic systems. Int. J. Fuzzy Syst. 22(8), 2546–2564 (2020)

    Article  Google Scholar 

  31. Lin, Q.-B., Xu, Z.-F., Lin, C.-M.: Battery-supercapacitor state-of-health estimation for hybrid energy storage system using a fuzzy brain emotional learning neural network. Int. J. Fuzzy Syst. 24(1), 12–26 (2022)

    Article  MathSciNet  Google Scholar 

  32. Lin, C.-M., Pham, D.-H., Huynh, T.-T.: Synchronization of chaotic system using a brain-imitated neural network controller and its applications for secure communications. IEEE Access 9, 75923–75944 (2021)

    Article  Google Scholar 

  33. Lin, C.-M., Huynh, T.-T.: Function-link fuzzy cerebellar model articulation controller design for nonlinear chaotic systems using TOPSIS multiple attribute decision-making method. Int. J. Fuzzy Syst. 20(6), 1839–1856 (2018). https://doi.org/10.1007/s40815-018-0482-7

    Article  MathSciNet  Google Scholar 

  34. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  35. Sun, N., Fang, Y., Wu, X.: An enhanced coupling nonlinear control method for bridge cranes. IET Control Theory Appl. 8(13), 1215–1223 (2014)

    Article  Google Scholar 

  36. Strganac, T.W., Ko, J., Thompson, D.E., Kurdila, A.J.: Identification and control of limit cycle oscillations in aeroelastic systems. J. Guid. Control. Dyn. 23(6), 1127–1133 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Science and Technology of Republic of China under grant MOST 109-2811-E-155-504-MY3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chih-Min Lin or Tuan-Tu Huynh.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, GL., Lin, CM., Cho, HY. et al. Decoupled Sliding Mode Control of Underactuated Nonlinear Systems Using a Fuzzy Brain Emotional Cerebellar Model Control System. Int. J. Fuzzy Syst. 25, 15–28 (2023). https://doi.org/10.1007/s40815-022-01378-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01378-w

Keywords

Navigation