Skip to main content
Log in

Intelligent wavelet fuzzy brain emotional controller using dual function-link network for uncertain nonlinear control systems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This study aims to propose a more efficient hybrid algorithm to achieve favorable control performance for uncertain nonlinear systems. The proposed algorithm comprises a dual function-link network-based multilayer wavelet fuzzy brain emotional controller and a sign(.) functional compensator. The proposed algorithm estimates the judgment and emotion of a brain that includes two fuzzy inference systems for the amygdala network and the prefrontal cortex network via using a dual-function-link network and three sub-structures. Three sub-structures are a dual-function-link network, an amygdala network, and a prefrontal cortex network. Particularly, the dual-function-link network is used to adjust the amygdala and orbitofrontal weights separately so that the proposed algorithm can efficiently reduce the tracking error, follow the reference signal well, and achieve good performance. A Lyapunov stability function is used to determine the adaptive laws, which are used to efficiently tune the system parameters online. Simulation and experimental studies for an antilock braking system and a magnetic levitation system are presented to verify the effectiveness and advantage of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Yang W, Jhang ST, Shi SG, Xu ZS, Ma ZM (2020) A novel additive consistency for intuitionistic fuzzy preference relations in group decision making. Appl Intell 50(12):4342–4356

    Article  Google Scholar 

  2. Tak N, Evren AA, Tez M, Egrioglu E (2018) Recurrent type-1 fuzzy functions approach for time series forecasting. Appl Intell 48(1):68–77

    Article  Google Scholar 

  3. Huynh T-T, Le T-L, Lin C-M (2020) A TOPSIS multi-criteria decision method-based intelligent recurrent wavelet CMAC control system design for MIMO uncertain nonlinear systems. Neural Comput & Applic 32(8):4025–4043

    Article  Google Scholar 

  4. Huynh T-T, Lin C-M, Le T-L, Zhong Z A (2020) mixed gaussian membership function fuzzy cmac for a three-link robot. In: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),. IEEE, pp 1–7

  5. Qiao J, Wang L (2021) Nonlinear system modeling and application based on restricted Boltzmann machine and improved BP neural network. Appl Intell 51(1):37–50

    Article  Google Scholar 

  6. Huynh T-T, Le T-L, Lin C-M (2018) Self-organizing recurrent wavelet fuzzy neural network-based control system design for mimo uncertain nonlinear systems using topsis method. Int J Fuzzy Syst 21(2):468–487

    Article  Google Scholar 

  7. Lucas C, Shahmirzadi D, Sheikholeslami N (2004) Introducing BELBIC: brain emotional learning based intelligent controller. Intell Automation Soft Computing 10(1):11–21

    Article  Google Scholar 

  8. Huynh T-T, Lin C-M, Le T-L, Le N-Q-K VV-P, Chao F (2020) Self-organizing double function-link fuzzy brain emotional control system design for uncertain nonlinear systems. IEEE Trans Syst, Man, Cybernetics: Syst:1–17. https://doi.org/10.1109/TSMC.2020.3036404

  9. Sun Y, Xu J, Qiang H, Lin G (2019) Adaptive neural-fuzzy robust position control scheme for maglev train systems with experimental verification. IEEE Trans Ind Electron 66(11):8589–8599

    Article  Google Scholar 

  10. Lin Q, Chen S, Lin C (2018) Parametric fault diagnosis based on fuzzy cerebellar model neural networks. IEEE Trans Indust Electr 66(10):8104–8115

    Article  Google Scholar 

  11. Nighot M, Ghatol A, Thakare V (2018) Self-organized hybrid wireless sensor network for finding randomly moving target in unknown environment. Int J Interact Mult Artif Intell 5(1):16–28

    Google Scholar 

  12. LeDoux J (1991) Emotion and the limbic system concept. Concepts Neurosci 2:169–199

    Google Scholar 

  13. Rouhani H, Jalili M, Araabi BN, Eppler W, Lucas C (2007) Brain emotional learning based intelligent controller applied to neurofuzzy model of micro-heat exchanger. Expert Syst Appl 32(3):911–918

    Article  Google Scholar 

  14. Hsu C-F, Su C-T, Lee T-T Chaos synchronization using brain-emotional-learning-based fuzzy control. In: 2016 Joint 8th International Conference on Soft Computing and Intelligent Systems (SCIS) and 17th International Symposium on Advanced Intelligent Systems (ISIS), 2016. IEEE, pp 811–816

  15. Zhao J, Lin C-M, Chao F (2018) Wavelet fuzzy brain emotional learning control system design for mimo uncertain nonlinear systems. Front Neurosci 12

  16. Lin C-M, Chung C-C (2015) Fuzzy brain emotional learning control system design for nonlinear systems. International Journal of Fuzzy Systems 17(2):117–128

    Article  MathSciNet  Google Scholar 

  17. Ayachi R, Bouhani H, Amor NB (2018) An evolutionary approach for learning opponent's deadline and reserve points in multi-issue negotiation. Int J Inter Multimedia Artif Intell 5(3):131–140

    Google Scholar 

  18. Milad HS, Farooq U, El-Hawary ME, Asad MU (2016) Neo-fuzzy integrated adaptive decayed brain emotional learning network for online time series prediction. IEEE Access 5:1037–1049

    Article  Google Scholar 

  19. Hsu C-F, Lee T-T (2017) Emotional fuzzy sliding-mode control for unknown nonlinear systems. Int J Fuzzy Syst 19(3):942–953

    Article  MathSciNet  Google Scholar 

  20. Le T-L, Lin C-M, Huynh T-T (2018) Self-evolving type-2 fuzzy brain emotional learning control design for chaotic systems using PSO. Appl Soft Comput 73:418–433

    Article  Google Scholar 

  21. Le T-L, Huynh T-T, Lin C-M (2020) Adaptive filter design for active noise cancellation using recurrent type-2 fuzzy brain emotional learning neural network. Neural Comput & Applic 32(12):8725–8734

    Article  Google Scholar 

  22. Huynh T-T, Lin C-M, Le T-L, Nguyen NP, Hong S-K, Chao F (2020) Wavelet interval type-2 fuzzy quad-function-link brain emotional control algorithm for the synchronization of 3d nonlinear chaotic systems. Int J Fuzzy Syst 22(8):2546–2564

    Article  Google Scholar 

  23. Lin C-M, Hsu C-F (2003) Neural-network hybrid control for antilock braking systems. IEEE Trans Neural Netw 14(2):351–359

    Article  MathSciNet  Google Scholar 

  24. Wang W-Y, Li I-H, Chen M-C, Su S-F, Hsu S-B (2009) Dynamic slip-ratio estimation and control of antilock braking systems using an observer-based direct adaptive fuzzy–neural controller. IEEE Trans Ind Electron 56(5):1746–1756

    Article  Google Scholar 

  25. Lin C-M, Li H-Y (2013) Intelligent hybrid control system design for antilock braking systems using self-organizing function-link fuzzy cerebellar model articulation controller. IEEE Trans Fuzzy Syst 21(6):1044–1055

    Article  Google Scholar 

  26. Hsu C-F, Kuo T-C (2014) Adaptive exponential-reaching sliding-mode control for antilock braking systems. Nonlinear Dyn 77(3):993–1010

    Article  Google Scholar 

  27. Hsu C-F (2016) Intelligent exponential sliding-mode control with uncertainty estimator for antilock braking systems. Neural Comput & Applic 27(6):1463–1475

    Article  Google Scholar 

  28. Lin C-M, Le T-L (2017) PSO-self-organizing interval type-2 fuzzy neural network for antilock braking systems. Int J Fuzzy Syst 19(5):1362–1374

    Article  MathSciNet  Google Scholar 

  29. Sun W, Zhang J, Liu Z (2019) Two-time-scale redesign for antilock braking systems of ground vehicles. IEEE Trans Ind Electron 66(6):4577–4586

    Article  Google Scholar 

  30. Zhai M, Long Z, Li X (2019) Fault-tolerant control of magnetic levitation system based on state observer in high speed maglev train. IEEE Access 7:31624–31633

    Article  Google Scholar 

  31. Safaeian R, Heydari H (2019) Optimal design of a compact passive magnetic bearing based on dynamic modelling. IET Electr Power Appl 13(6):720–729

    Article  Google Scholar 

  32. Beijen MA, Heertjes MF, Butler H, Steinbuch M (2019) Mixed feedback and feedforward control design for multi-axis vibration isolation systems. Mechatronics 61:106–116

    Article  Google Scholar 

  33. Wu Z, Wang X, Jiao Y, Zhu Y, Zhou J (2019) Guidance performance evaluation method for infrared imaging guided missile based on extended object-oriented petri net. Optik 185:88–96

    Article  Google Scholar 

  34. Zhang Y, Xian B, Ma S (2015) Continuous robust tracking control for magnetic levitation system with unidirectional input constraint. IEEE Trans Ind Electron 62(9):5971–5980

    Article  Google Scholar 

  35. de Jesús RJ, Zhang L, Lughofer E, Cruz P, Alsaedi A, Hayat T (2017) Modeling and control with neural networks for a magnetic levitation system. Neurocomputing 227:113–121

    Article  Google Scholar 

  36. Sadek U, Sarjaš A, Chowdhury A, Svečko R (2017) Improved adaptive fuzzy backstepping control of a magnetic levitation system based on symbiotic organism search. Appl Soft Comput 56:19–33

    Article  Google Scholar 

  37. Lin C-M, Huynh T-T (2019) Dynamic TOPSIS fuzzy cerebellar model articulation controller for magnetic levitation system. J Intell Fuzzy Syst 36(3):2465–2480

    Article  Google Scholar 

  38. Ali OAM, Ali AY, Sumait BS (2015) Comparison between the effects of different types of membership functions on fuzzy logic controller performance. Int J 76:76–83

    Google Scholar 

  39. Bigand A, Colot O (2016) Membership function construction for interval-valued fuzzy sets with application to Gaussian noise reduction. Fuzzy Sets Syst 286:66–85

    Article  MathSciNet  Google Scholar 

  40. Rong N, Wang Z, Ding S, Zhang H (2018) Interval type-2 regional switching T–S fuzzy control for time-delay systems via membership function dependent approach. Fuzzy Sets Syst 374:152–169

    Article  MathSciNet  MATH  Google Scholar 

  41. Gardner MW, Dorling S (1998) Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos Environ 32(14–15):2627–2636

    Article  Google Scholar 

  42. Svozil D, Kvasnicka V, Pospichal J (1997) Introduction to multi-layer feed-forward neural networks. Chemom Intell Lab Syst 39(1):43–62

    Article  Google Scholar 

  43. Patra JC, Pal RN (1995) A functional link artificial neural network for adaptive channel equalization. Signal Process 43(2):181–195

    Article  MATH  Google Scholar 

  44. Zhou Q, Chao F, Lin C-M (2018) A functional-link-based fuzzy brain emotional learning network for breast tumor classification and chaotic system synchronization. Int J Fuzzy Syst 20(2):349–365

    Article  MathSciNet  Google Scholar 

  45. Lin C-M, Huynh T-T (2018) Function-link fuzzy cerebellar model articulation controller design for nonlinear chaotic systems using topsis multiple attribute decision-making method. Int J Fuzzy Syst 20(6):1839–1856

    Article  MathSciNet  Google Scholar 

  46. Huynh TT, Lin CM Wavelet dual function-link fuzzy brain emotional learning system design for system identification and trajectory tracking of nonlinear systems. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 6–9 Oct. 2019 2019. pp 1653–1657

  47. Lin C-M, Li H-Y (2012) TSK fuzzy CMAC-based robust adaptive backstepping control for uncertain nonlinear systems. IEEE Trans Fuzzy Syst 20(6):1147–1154

    Article  Google Scholar 

  48. Le T-L (2019) Intelligent fuzzy controller design for antilock braking systems. J Intell Fuzzy Syst 36(4):3303–3315

    Article  Google Scholar 

  49. Huynh TT, Lin CM, Le TL, Cho H, Pham TTT, Le NQK, Chao F (2020) A new self-organizing fuzzy cerebellar model articulation controller for uncertain nonlinear systems using overlapped gaussian membership functions. IEEE Trans Ind Electron 67(11):9671–9682

    Article  Google Scholar 

  50. Slotine JJE, Li W (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  51. Sharkawy AB (2010) Genetic fuzzy self-tuning PID controllers for antilock braking systems. Eng Appl Artif Intell 23(7):1041–1052

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Science and Technology of Taiwan under grant MOST 109-2811-E-155-504-MY3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tuan-Tu Huynh or Chih-Min Lin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof for Theorem 1

Proof: A Lyapunov function is determined as:

$$ {\displaystyle \begin{array}{c}V(t)=\frac{1}{2}{s}^T(t){g}_0^{-1}s(t)+\frac{1}{2{\lambda}_p} tr\left({\overset{\sim }{p}}^T\overset{\sim }{p}\right)+\frac{1}{2{\lambda}_q} tr\left({\overset{\sim }{q}}^T\overset{\sim }{q}\right)+\frac{1}{2{\lambda}_{z_k^a}} tr\left(\tilde{z}_{k}^{aT}\tilde{z}_{k}^a\right)+\frac{1}{2{\lambda}_{z_k^o}} tr\left(\tilde{z}_{k}^{oT}\tilde{z}_{k}^o\right)+\\ {}\frac{1}{2{\lambda}_m}{\overset{\sim }{m}}^T\overset{\sim }{m}+\frac{1}{2{\lambda}_{\sigma }}{\overset{\sim }{\sigma}}^T\overset{\sim }{\sigma }+\frac{{\overset{\sim }{\varDelta}}^T\overset{\sim }{\varDelta }}{2{\lambda}_{\varDelta }}\end{array}} $$
(65)

Next, taking the derivative of (65), then using (49), gives:

$$ {\displaystyle \begin{array}{c}\dot{V}(t)={s}^T(t){g}_0^{-1}\dot{s}(t)+\frac{1}{\lambda_p} tr\left({\overset{\sim }{p}}^T\dot{\overset{\sim }{p}}\right)+\frac{1}{\lambda_q} tr\left({\overset{\sim }{q}}^T\dot{\overset{\sim }{q}}\right)+\frac{1}{\lambda_{z_k^a}} tr\left(\tilde{z}_{k}^{aT}{\dot{\overset{\sim }{z}}}_k^a\right)+\frac{1}{\lambda_{z_k^o}} tr\left(\tilde{z}_{k}^{oT}{\dot{\overset{\sim }{z}}}_k^o\right)+\frac{1}{\lambda_m}{\overset{\sim }{m}}^T\dot{\overset{\sim }{m}}+\frac{1}{\lambda_{\sigma }}{\overset{\sim }{\sigma}}^T\dot{\overset{\sim }{\sigma }}+\frac{{\overset{\sim }{\varDelta}}^T\dot{\overset{\sim }{\varDelta }}}{\lambda_{\varDelta }}\\ {}={s}^T(t)\Big[\tilde{z}_{k}^{aT}\hat{a}+{\hat{z}}_k^{aT}\left({\overline{a}}_m^T\overset{\sim }{m}+{\overline{a}}_{\sigma}^T\overset{\sim }{\sigma}\right)+{\hat{z}}_k^{aT}\left({\overline{a}}_{p_k}^T\tilde{p}_{k}+{\overline{a}}_{q_k}^T\tilde{q}_{k}\right)-\\ {}\tilde{z}_{k}^{oT}\hat{o}-{\hat{z}}_k^{oT}\left({\overline{o}}_m^T\overset{\sim }{m}+{\overline{o}}_{\sigma}^T\overset{\sim }{\sigma}\right)-{\hat{z}}_k^{oT}\left({\overline{a}}_{p_k}^T\tilde{p}_{k}+{\overline{a}}_{q_k}^T\tilde{q}_{k}\right)+\varTheta -{u}_{rb}\Big]+\\ {}\frac{1}{\lambda_p} tr\left({\overset{\sim }{p}}^T\dot{\overset{\sim }{p}}\right)+\frac{1}{\lambda_q} tr\left({\overset{\sim }{q}}^T\dot{\overset{\sim }{q}}\right)+\frac{1}{\lambda_{z_k^a}} tr\left(\tilde{z}_{k}^{aT}{\dot{\overset{\sim }{z}}}_k^a\right)+\frac{1}{\lambda_{z_k^o}} tr\left(\tilde{z}_{k}^{oT}{\dot{\overset{\sim }{z}}}_k^o\right)+\\ {}\frac{1}{\lambda_m}{\overset{\sim }{m}}^T\dot{\overset{\sim }{m}}+\frac{1}{\lambda_{\sigma }}{\overset{\sim }{\sigma}}^T\dot{\overset{\sim }{\sigma }}+\frac{{\overset{\sim }{\varDelta}}^T\dot{\overset{\sim }{\varDelta }}}{\lambda_{\varDelta }}\end{array}} $$
(66)
  • Remark 1

\( {\boldsymbol{p}}^{\ast },{\boldsymbol{q}}^{\ast },{{\boldsymbol{z}}_k^a}^{\ast },{{\boldsymbol{z}}_k^o}^{\ast },{\boldsymbol{m}}^{\ast },\mathrm{and}\ {\boldsymbol{\sigma}}^{\ast } \)are constants; hence,

$$ \dot{\tilde{\boldsymbol{q}}}=-\dot{\hat{\boldsymbol{q}}},\dot{\tilde{\boldsymbol{p}}}=-\dot{\hat{\boldsymbol{p}}},{\dot{\tilde{\boldsymbol{z}}}}_k^a=-{\dot{\hat{\boldsymbol{z}}}}_k^a,{\dot{\tilde{\boldsymbol{z}}}}_k^o=-{\dot{\hat{\boldsymbol{z}}}}_k^o,\dot{\tilde{\boldsymbol{\sigma}}}=-\dot{\hat{\boldsymbol{\sigma}}},\mathrm{and}\ \dot{\tilde{\boldsymbol{m}}}=-\dot{\hat{\boldsymbol{m}}} $$
(67)
  • Remark 2

$$ \left\{{\displaystyle \begin{array}{c}{\hat{z}}_k^{aT}{\overline{a}}_m^T\overset{\sim }{m}={\overset{\sim }{m}}^T{\overline{a}}_m{\hat{z}}_k^a\\ {}{\hat{z}}_k^{aT}{\overline{a}}_{\sigma}^T\overset{\sim }{\sigma }={\overset{\sim }{\sigma}}^T{\overline{a}}_{\sigma }{\hat{z}}_k^a\\ {}{\hat{z}}_k^{aT}{\overline{a}}_{p_k}^T\tilde{p}_{k}=\tilde{p}_{k}^T{\overline{a}}_{p_k}{\hat{z}}_k^a\\ {}{\hat{z}}_k^{aT}{\overline{a}}_{q_k}^T\tilde{q}_{k}=\tilde{q}_{k}^T{\overline{a}}_{q_k}{\hat{z}}_k^a\end{array}},\right\{{\displaystyle \begin{array}{c}{\hat{z}}_k^{oT}{\overline{o}}_m^T\overset{\sim }{m}={\overset{\sim }{m}}^T{\overline{o}}_m{\hat{z}}_k^o\\ {}{\hat{z}}_k^{oT}{\overline{o}}_{\sigma}^T\overset{\sim }{\sigma }={\overset{\sim }{\sigma}}^T{\overline{o}}_{\sigma }{\hat{z}}_k^o\\ {}{\hat{z}}_k^{oT}{\overline{a}}_{p_k}^T\tilde{p}_{k}=\tilde{p}_{k}^T{\overline{a}}_{p_k}{\hat{z}}_k^o\\ {}{\hat{z}}_k^{oT}{\overline{a}}_{q_k}^T\tilde{q}_{k}=\tilde{q}_{k}^T{\overline{a}}_{q_k}{\hat{z}}_k^o\end{array}}\ and\Big\{{\displaystyle \begin{array}{c} tr\left(\tilde{z}_{k}^{aT}{\dot{\overset{\sim }{z}}}_k^a\right)=\sum \limits_{k=1}^L\tilde{z}_{k}^{aT}{\dot{\hat{z}}}_k^a\\ {} tr\left(\tilde{z}_{k}^{oT}{\dot{\overset{\sim }{z}}}_k^o\right)=\sum \limits_{k=1}^L\tilde{z}_{k}^{oT}{\dot{\hat{z}}}_k^o\\ {} tr\left({\overset{\sim }{p}}^T\dot{\hat{p}}\right)=\sum \limits_{k=1}^L{{\overset{\sim }{p}}^T}_k{\dot{\hat{p}}}_k\\ {} tr\left({\overset{\sim }{q}}^T\dot{\hat{q}}\right)=\sum \limits_{k=1}^L{{\overset{\sim }{q}}^T}_k{\dot{\hat{q}}}_k\end{array}} $$
(68)

Using (66)–(68), (65) becomes

$$ {\displaystyle \begin{array}{c}\dot{V}(t)=\left[\sum \limits_{k=1}^L\tilde{p}_{k}^T\left({s}_k(t)\left({\overline{a}}_{p_k}{\hat{z}}_k^a-{\overline{o}}_{p_k}{\hat{z}}_k^o\right)-\frac{{\dot{\hat{p}}}_k}{\lambda_p}\right)\right]+\left[\sum \limits_{k=1}^L\tilde{q}_{k}^T\left(\sum \limits_{k=1}^L{s}_k(t)\left({\overline{a}}_{q_k}{\hat{z}}_k^a-{\overline{o}}_{q_k}{\hat{z}}_k^o\right)-\frac{{\dot{\hat{q}}}_k}{\lambda_q}\right)\right]+\\ {}\left[\sum \limits_{k=1}^L\tilde{z}_{k}^{aT}\left({s}_k(t)\hat{a}-\frac{{\dot{\hat{z}}}_k^a}{\lambda_{z^a}}\right)\right]+\left[\sum \limits_{k=1}^L\tilde{z}_{k}^{oT}\left(-{s}_k(t)\hat{o}-\frac{{\dot{\hat{z}}}_k^o}{\lambda_{z^o}}\right)\right]+{\overset{\sim }{m}}^T\left[\sum \limits_{k=1}^L{s}_k(t)\left[{\overline{a}}_m{\hat{z}}_k^a-{\overline{o}}_m{\hat{z}}_k^o\right]-\frac{\dot{\hat{m}}}{\lambda_m}\right]+\\ {}{\overset{\sim }{\sigma}}^T\left[\sum \limits_{k=1}^L{s}_k(t)\left[{\overline{a}}_{\sigma }{\hat{z}}_k^a-{\overline{o}}_{\sigma }{\hat{z}}_k^o\right]-\frac{\dot{\hat{\sigma}}}{\lambda_{\sigma }}\right]+{s}^T(t)\left[\varTheta -{u}_{rb}\right]+\frac{{\overset{\sim }{\varDelta}}^T\dot{\overset{\sim }{\varDelta }}}{\lambda_{\varDelta }}\end{array}} $$
(69)

Via the adaptive laws in (50)–(53) and the robust controller in (54), then (69) becomes

$$ \dot{V}(t)={s}^T(t)\left(\varTheta -{u}_{rb}\right)+\frac{{\overset{\sim }{\varDelta}}^T\dot{\overset{\sim }{\varDelta }}}{\lambda_{\varDelta }}={s}^T(t)\left(\varTheta -\hat{\varDelta}\operatorname{sgn}\left(s(t)\right)\right)+\frac{{\overset{\sim }{\varDelta}}^T\dot{\overset{\sim }{\varDelta }}}{\lambda_{\varDelta }}={s}^T(t)\varTheta -\hat{\varDelta}\mid s(t)\mid +\frac{{\overset{\sim }{\varDelta}}^T\dot{\overset{\sim }{\varDelta }}}{\lambda_{\varDelta }} $$
(70)

If the error bound for \( \dot{\hat{\Delta}} \) is chosen as

$$ \dot{\tilde{\Delta}}=-\dot{\hat{\Delta}}=-{\lambda}_{\Delta}\left|\boldsymbol{s}(t)\right|, $$
(71)

then (60) is rewritten as

$$ {\displaystyle \begin{array}{c}\dot{V}(t)={s}^T(t)\varTheta -\hat{\varDelta}\mid s(t)\mid -\left(\varDelta -\hat{\varDelta}\right)\mid s(t)\mid \\ {}=\left({s}^T(t)\varTheta -\varDelta |s(t)|\right)\le \left(|\varTheta \Big\Vert s(t)|-\varDelta |s(t)|\right)\\ {}=-\left(\varDelta -|\varTheta |\right)\mid s(t)\mid \le 0\end{array}} $$
(72)

As \( \dot{V}(t)\le 0 \), it indicates that \( \tilde{\Delta} \) and s(t) are bounded. Set \( \Psi (t)\equiv \left(\Delta -\left|\boldsymbol{\varTheta} \right|\right)\boldsymbol{s}(t)\le \left(\Delta -\left|\boldsymbol{\varTheta} \right|\right)\left|\boldsymbol{s}(t)\right|\le -\dot{V}(t) \), then integrate Ψ(t) with respect to time, gives

$$ {\int}_0^t\Psi \left(\tau \right) d\tau \le \dot{V}(0)-\dot{V}(t) $$
(73)

\( \dot{V}(0) \) is bounded and \( \dot{V}(t) \) does not increase, obtains:

$$ \underset{t\to \infty }{\lim}\underset{0}{\overset{t}{\int }}\Psi \left(\tau \right) d\tau <\infty $$
(74)

Furthermore, \( \dot{\Psi}(t) \) is bounded via Barbalat’s Lemma, then \( \underset{t\to \infty }{\lim}\Psi (t)\to 0 \). That means s → 0 when t→∞ [50]. Consequently, the WDFLFBEC is asymptotically stable. Hence, the control system is stable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, TT., Lin, CM., Le, NQK. et al. Intelligent wavelet fuzzy brain emotional controller using dual function-link network for uncertain nonlinear control systems. Appl Intell 52, 2720–2744 (2022). https://doi.org/10.1007/s10489-021-02482-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02482-4

Keywords

Navigation