Skip to main content
Log in

Global stabilization of 2-DOF underactuated mechanical systems—an equivalent-input-disturbance approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a new method of globally stabilizing a non-linear underactuated mechanical system with two degrees of freedom (DOF). It is based on the idea of equivalent input disturbance (EID), and designing the controller requires only the state variables of position, not velocity. The design procedure has two steps: (1) Use a global homeomorphic coordinate transformation to convert the original system into a new non-linear system. This changes the problem of stabilizing the original system into one of stabilizing the new system. (2) Divide the new system into linear and non-linear parts and take the non-linear part to be an artificial disturbance, thereby enabling use of the EID approach to globally asymptotically stabilize the new system at the origin. The new method was tested through numerical simulations on three well-known 2-DOF underactuated mechanical systems (TORA, beam ball, inertia wheel pendulum). The results demonstrate its validity and its superiority over others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bullo, F., Lynch, K.M.: Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems. IEEE Trans. Robot. Autom. 17(4), 402–412 (2001)

    Article  Google Scholar 

  2. Grizzle, J.W., Moog, C.H., Chevallereau, C.: Nonlinear control of mechanical systems with an unactuated cyclic variable. IEEE Trans. Autom. Control 50(5), 559–576 (2005)

    Article  MathSciNet  Google Scholar 

  3. Blajer, W., Kołodziejczyk, K.: Control of underactuated mechanical systems with servo-constraints. Nonlinear Dyn. 50(4), 781–791 (2007)

    Article  MATH  Google Scholar 

  4. Alleyne, A.: Physical insights on passivity-based TORA control designs. IEEE Trans. Control Syst. Technol. 6(3), 436–439 (1998)

    Article  MathSciNet  Google Scholar 

  5. Albahkali, T., Mukherjee, R.: Das T.: Swing-up control of the pendubot: An impulse-momentum approach. IEEE Trans. Robot. 25(4), 975–982 (2009)

    Article  Google Scholar 

  6. Lai, X., She, J., Yang, S.X., Wu, M.: Control of acrobot based on non-smooth Lyapunov function and comprehensive stability analysis. IET Control Theory Appl. 2(3), 181–191 (2008)

    Article  MathSciNet  Google Scholar 

  7. Almutairi, N.B., Zribi, M.: On the sliding mode control of a ball on a beam system. Nonlinear Dyn. 59(1–2), 221–238 (2010)

    Article  MATH  Google Scholar 

  8. Ibanez, C., Azuela, J.: Stabilization of the Furuta pendulum based on a Lyapunov function. Nonlinear Dyn. 49(1–2), 1–8 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Praly, L., Ortega, R., Kaliora, G.: Stabilization of nonlinear systems via forwarding modLgV. IEEE Trans. Autom. Control 46(9), 1461–1466 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Oriolo, G., Nakamura, Y.: Control of mechanical systems with second-order nonholonomic constraints: underactuated manipulators. In: Proc. 30th IEEE Conference on Decision and Control, Brighton, UK, pp. 2398–2403 (1991)

    Chapter  Google Scholar 

  11. Fantoni, I., Lozano, R., Spong, M.W.: Energy based control of the pendubot. IEEE Trans. Autom. Control 45(4), 725–729 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lai, X., She, J., Yang, S.X., Wu, M.: Comprehensive unified control strategy for underactuated two-link manipulators. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(2), 389–398 (2009)

    Article  Google Scholar 

  13. Xin, X., Kaneda, M.: Analysis of the energy-based swing-up control of the Acrobot. Int. J. Robust Nonlinear Control 17(16), 1503–1524 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Xin, X., Kaneda, M.: Swing-up control for a 3-DOF gymnastic robot with passive first joint: design and analysis. IEEE Trans. Robot. 23(6), 1271–1285 (2007)

    Article  Google Scholar 

  15. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  16. Spong, M.W.: The swing up control problem for the acrobot. IEEE Control Syst. Mag. 15(1), 44–55 (1995)

    Article  Google Scholar 

  17. Aoustin, Y., Formal’skii, A., Martynenko, Y.: Pendubot: combining of energy and intuitive approaches to swing up, stabilization in erected pose. Multibody Syst. Dyn. 25(1), 60–85 (2011)

    Article  MathSciNet  Google Scholar 

  18. Seifried, R.: Two approaches for feedforward control and optimal design of underactuated multibody systems. Multibody Syst. Dyn. (2011). doi:10.1007/s11044-011-9261-z

  19. Olfati-Saber, R.: Control of underactuated mechanical systems with two degrees of freedom and symmetry. In: Proc. American Control Conference, Chicago, IL, pp. 4092–4096 (2000)

    Google Scholar 

  20. Qaiser, N., Iqbal, N., Hussain, A., Qaiser, N.: Exponential stabilization of a class of underactuated mechanical systems using dynamic surface control. Int. J. Control. Autom. Syst. 5(5), 547–558 (2007)

    Google Scholar 

  21. Ortega, R., Spong, M.W., Gómez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1232 (2002)

    Article  Google Scholar 

  22. Acosta, J.A., Lopez-Martinez, M.: Constructive feedback linearization of underactuated mechanical systems with 2-DOF. In: Proc. 40th IEEE Conference on Decision and Control, Seville, Spain, pp. 4909–4914 (2005)

    Chapter  Google Scholar 

  23. Xu, R., Ozguner, U.: Sliding mode control of a class of underactuated systems. Automatica 44(1), 233–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Berghuis, H., Nijmeijer, H.: A passivity approach to controller-observer design for robots. IEEE Trans. Robot. Autom. 9(6), 740–754 (1993)

    Article  Google Scholar 

  25. She, J., Fang, M., Ohyama, Y., Hashimoto, H., Wu, M.: Improving disturbance-rejection performance based on an equivalent-input-disturbance approach. IEEE Trans. Ind. Electron. 55(1), 380–389 (2008)

    Article  Google Scholar 

  26. Mullhaupt, Ph., Srinivasan, B., Bonvin, D.: Analysis of exclusively-kinetic two-link underactuated mechanical systems. Automatica 38(9), 1565–1573 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Anderson, B.D.O., Moore, J.B.: Optimal Control: Linear Quadratic Method. Prentice-Hall, Englewood Cliffs (1989)

    Google Scholar 

  28. Kimura, H.: A new approach to perfect regulation and the bounded peaking in linear multivariable control systems. IEEE Trans. Autom. Control 26(1), 253–270 (1981)

    Article  MATH  Google Scholar 

  29. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optical Control. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  30. Wan, C.J., Bernstein, D.S., Coppola, V.T.: Global stabilization of the oscillating eccentric rotor. Nonlinear Dyn. 10(1), 49–62 (1996)

    Article  Google Scholar 

  31. Jankovic, M., Fontaine, D., Kokotovic, P.: TORA example: cascade- and passivity-based control designs. IEEE Trans. Control Syst. Technol. 4(3), 292–297 (1996)

    Article  Google Scholar 

  32. Hauser, J., Sastry, S., Kokotovid, P.: Nonlinear control via approximate input-output linearization: the ball and beam example. IEEE Trans. Autom. Control 37(3), 392–398 (1992)

    Article  Google Scholar 

  33. Chen, S., Yu, F., Chung, H.: Decoupled fuzzy controller design with single-input fuzzy logic. Fuzzy Sets Syst. 129(3), 335–342 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Santibanez, V., Kelly, R., Sandoval, J.: Control of the inertia wheel pendulum by bounded torques. In: Proc. 44th IEEE Conference on Decision and Control, Seville, Spain, pp. 8266–8270 (2005)

    Chapter  Google Scholar 

  35. Spong, M.W., Corke, P., Lozano, R.: Nonlinear control of the reaction wheel pendulum. Automatica 37(11), 1845–1851 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuzhi Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

She, J., Zhang, A., Lai, X. et al. Global stabilization of 2-DOF underactuated mechanical systems—an equivalent-input-disturbance approach. Nonlinear Dyn 69, 495–509 (2012). https://doi.org/10.1007/s11071-011-0280-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0280-3

Keywords

Navigation