Skip to main content

Advertisement

Log in

Roles of Atmospheric Aerosols in Extreme Meteorological Events: a Systematic Review

  • Air Pollution (H Zhang and Y Sun, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Atmospheric aerosol from both natural and anthropogenic activities has long been acknowledged as one of the important factors influencing regional and global climate change. Many regions around the globe experienced high aerosol loadings because of intensive emissions, yet the roles of atmospheric aerosols in extreme meteorological and air pollution events have not been well demonstrated due mainly to the complexity of atmospheric physical and chemical interaction at mesoscale and even microscale. Here, we present a comprehensive review of current understanding on the role of atmospheric aerosols in the development and evolution of extreme meteorological events, including monsoon circulation, heat waves, extreme rainfall, tornadoes, and severe air pollution.

Recent Findings

Aerosols could participate in the development of meteorological systems through direct and indirect effects. Large-scale precipitation from shallow stratiform clouds was found to be suppressed by aerosols, while invigoration effects contribute to deep convection and even catastrophic floods in local areas. The occurrence of high-impact weather such as tornadoes and tropical cyclone is also related to aerosol concentration and distribution. Moreover, a positive feedback between aerosols and boundary layer meteorology is proposed as an important factor conducive to heavy haze pollution over urban areas.

Summary

The work underscores the great importance of aerosols’ meteorological feedback in extreme weather events. Integrated observations and seamless coupling of meteorology and atmospheric chemistry in models are highlighted for future studies to fill the knowledge gap in current research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al. Climate Change 2021: the physical science basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland: IPCC; 2021. This report comprehensively reviewed the climate forcing and effects of aerosols based on observational and simulation studies.

  2. Meehl GA, Tebaldi C. More intense more frequent and longer lasting heat waves in the 21st century. Science. 2004;305:994–7.

    Article  CAS  Google Scholar 

  3. Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, et al. The impacts of climate change on water resources and agriculture in China. Nature. 2010;467:43–51.

    Article  CAS  Google Scholar 

  4. Pope CA 3rd, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56:709–42.

    Article  CAS  Google Scholar 

  5. Brunekreef B, Holgate ST. Air pollution and health. Lancet. 2002;360:1233–42.

    Article  CAS  Google Scholar 

  6. •• Twomey S. Pollution and the planetary albedo. Atmos Environ. 1974;8:1251–6. This study revealed the importance of indirect effect of aerosols serving as cloud condensation nuclei.

  7. • Hansen J, Sato M, Ruedy R. Radiative forcing and climate response. J Geophys Res Atmos. 1997;102:6831–64. This article examined the sensitivity of climate models to radiative forcing of different atmospheric components.

  8. Haywood J, Boucher O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys. 2000;38:513–43.

    Article  CAS  Google Scholar 

  9. Chan CK, Yao X. Air pollution in mega cities in China. Atmos Environ. 2008;42:1–42.

    Article  CAS  Google Scholar 

  10. Huang RJ, Zhang Y, Bozzetti C, Ho KF, Cao JJ, Han Y, et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature. 2014;514:218–22.

    Article  CAS  Google Scholar 

  11. Ji D, Li L, Wang Y, Zhang J, Cheng M, Sun Y, et al. The heaviest particulate air-pollution episodes occurred in northern China in January 2013: insights gained from observation. Atmos Environ. 2014;92:546–56.

    Article  CAS  Google Scholar 

  12. Lelieveld J, Crutzen PJ, Ramanathan V, Andreae MO, Brenninkmeijer CAM, Campos T, et al. The Indian ocean experiment: widespread air pollution from South and Southeast Asia. Science. 2001;291:1031–6.

    Article  CAS  Google Scholar 

  13. Ramanathan V, Crutzen PJ, Lelieveld J, Mitra AP, Althausen D, Anderson J, et al. Indian Ocean experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res Atmos. 2001;106:28371–98.

    Article  CAS  Google Scholar 

  14. Duffy PB, Tebaldi C. Increasing prevalence of extreme summer temperatures in the US. Clim Change. 2012;111:487–95.

    Article  Google Scholar 

  15. Ashley WS, Ashley ST. Flood fatalities in the United States. J Appl Meteorol Climatol. 2008;47:805–18.

    Article  Google Scholar 

  16. • Mueller B, Seneviratne SI. Hot days induced by precipitation deficits at the global scale. Proc Natl Acad Sci USA. 2012;109:12398–403. This article examined the strong linkage between hot extremes and moisture deficits, indicating widespread moisture-temperature coupling relationship.

  17. Jimenez-Munoz JC, Mattar C, Barichivich J, Santamaria-Artigas A, Takahashi K, Malhi Y, et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Nino 2015–2016. Sci Rep. 2016;6:33130.

    Article  CAS  Google Scholar 

  18. Cayan DR, Redmond KT, Riddle LG. ENSO and hydrologic extremes in the western United States. J Clim. 1999;12:2881–93.

    Article  Google Scholar 

  19. Camargo SJ, Ting M, Kushnir Y. Influence of local and remote SST on North Atlantic tropical cyclone potential intensity. Clim Dyn. 2012;40:1515–29.

    Article  Google Scholar 

  20. • Brown SJ, Stott PA, Christidis N. The role of human activity in the recent warming of extremely warm daytime temperatures. J Clim. 2011;24:1922–30. This work showed evidence of a significant anthropogenic influences on the occurrence of extreme warm climate.

  21. Doocy S, Daniels A, Murray S, Kirsch TD. The human impact of floods: a historical review of events 1980–2009 and systematic literature review. PLoS Curr. 2013;5.

  22. Mitchell JFB, Lowe J, Wood RA, Vellinga M. Extreme events due to human-induced climate change. Philos Trans R Soc A Math Phys Eng Sci. 2006;364:2117–33.

    Article  Google Scholar 

  23. Cowan T, Undorf S, Hegerl GC, Harrington LJ, Otto FEL. Present-day greenhouse gases could cause more frequent and longer Dust Bowl heatwaves. Nat Clim Change. 2020;10:505–10.

    Article  CAS  Google Scholar 

  24. Barnett TP, Adam JC, Lettenmaier DP. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature. 2005;438:303–9.

    Article  CAS  Google Scholar 

  25. Gryspeerdt E, Stier P, Partridge DG. Links between satellite-retrieved aerosol and precipitation. Atmos Chem Phys. 2014;14:9677–94.

    Article  CAS  Google Scholar 

  26. Khain AP, Ilotoviz E, Benmoshe N, Phillips VTJ, Ryzhkov AV. Effect of aerosols on freezing drops hail and precipitation in a midlatitude storm. J Atmos Sci. 2016;73:109–44.

    Article  Google Scholar 

  27. Fiore AM, Mascioli NR, Previdi M, Correa G. Temperature and precipitation extremes in the United States: quantifying the responses to anthropogenic aerosols and greenhouse gases +. J Clim. 2016;29:2689–701.

    Article  Google Scholar 

  28. Touma D, Stevenson S, Lehner F, Coats S. Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather. Nat Commun. 2021;12:212.

    Article  CAS  Google Scholar 

  29. Mora C, Spirandelli D, Franklin EC, Lynham J, Kantar MB, Miles W, et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat Clim Change. 2018;8:1062–71.

    Article  CAS  Google Scholar 

  30. Stott PA, Allen M, Christidis N, Dole RM, Hoerling M, Huntingford C, et al. Attribution of weather and climate-related events. In: Asrar GR, Hurrell JW, editors., et al., Climate science for serving society: research modeling and prediction priorities. Dordrecht: Springer, Netherlands; 2013. p. 307–37.

    Chapter  Google Scholar 

  31. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD. Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res. 2008;113.

  32. • Stanhill G, Cohen S. Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric For Meteorol. 2001;107:255–78. This article examined the reduction in solar radiation caused by anthropogenic aerosols using accurate measurements.

  33. Charlson R, Schwartz S, Hales J, Cess R, Coakley JA Jr, Hansen J, et al. Climate Forcing by Anthropogenic Aerosols. Science. 1992;255:423–30.

    Article  CAS  Google Scholar 

  34. Gilgen H, Wild M, Ohmura A. Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. J Clim. 1998;11:2042–61.

    Article  Google Scholar 

  35. Chen W, Dong B, Wilcox L, Luo F, Dunstone N, Highwood EJ. Attribution of recent trends in temperature extremes over China: role of changes in anthropogenic aerosol emissions over Asia. J Clim. 2019;32:7539–60.

    Article  Google Scholar 

  36. Shiogama H, Christidis N, Caesar J, Yokohata T, Nozawa T, Emori S. Detection of greenhouse gas and aerosol influences on changes in temperature extremes. SOLA. 2006;2:152–5.

    Article  Google Scholar 

  37. Zhong S, Qian Y, Zhao C, Leung R, Wang H, Yang B, et al. Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China. Atmos Chem Phys. 2017;17:5439–57.

    Article  CAS  Google Scholar 

  38. Bernstein DN, Neelin JD, Li QB, Chen D. Could aerosol emissions be used for regional heat wave mitigation? Atmos Chem Phys. 2013;13:6373–90.

    Article  CAS  Google Scholar 

  39. Dave P, Bhushan M, Venkataraman C. Absorbing aerosol influence on temperature maxima: An observation based study over India. Atmos Environ. 2020;223:117237.

    Article  CAS  Google Scholar 

  40. Song F, Zhou T, Qian Y. Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys Res Lett. 2014;41:596–603.

    Article  Google Scholar 

  41. • Bollasina MA, Ming Y, Ramaswamy V. Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science. 2011;334:502–5. This work linked the summertime drying trend over South Asia to human influenced aerosol emissions by a series of climate model experiments.

  42. Sarangi C, Kanawade VP, Tripathi SN, Thomas A, Ganguly D. Aerosol-induced intensification of cooling effect of clouds during Indian summer monsoon. Nat Commun. 2018;9:3754.

    Article  CAS  Google Scholar 

  43. Zhu J, Liao H, Li J. Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon. Geophys Res Lett. 2012;39.

  44. Zhang L, Liao H, Li J. Impacts of Asian summer monsoon on seasonal and interannual variations of aerosols over eastern China. J Geophys Res. 2010;115.

  45. •• Lau KM, Kim MK, Kim KM. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn. 2006;26:855–64. This article proposed the well-known "elevated heat pump" theory to explain the role of aerosols with the impact of Tibetan Plateau topography.

  46. Meehl GA, Arblaster JM, Collins WD. Effects of black carbon aerosols on the Indian monsoon. J Clim. 2008;21:2869–82.

    Article  Google Scholar 

  47. Lau WKM, Kim KM, Shi JJ, Matsui T, Chin M, Tan Q, et al. Impacts of aerosol-monsoon interaction on rainfall and circulation over Northern India and the Himalaya Foothills. Clim Dyn. 2017;49:1945–60.

    Article  Google Scholar 

  48. Zhao C, Liu X, Ruby Leung L, Hagos S. Radiative impact of mineral dust on monsoon precipitation variability over West Africa. Atmos Chem Phys. 2011;11:1879–93.

    Article  CAS  Google Scholar 

  49. Ding K, Huang X, Ding A, Wang M, Su H, Kerminen VM, et al. Aerosol-boundary-layer-monsoon interactions amplify semi-direct effect of biomass smoke on low cloud formation in Southeast Asia. Nat Commun. 2021;12:6416.

    Article  CAS  Google Scholar 

  50. Liu Y, Sun JR, Yang B. The effects of black carbon and sulphate aerosols in China regions on East Asia monsoons. Tellus B Chem Phys Meteorol. 2009;61:642–56.

    Article  CAS  Google Scholar 

  51. Jiang Y, Yang X-Q, Liu X, Yang D, Sun X, Wang M, et al. Anthropogenic aerosol effects on East Asian winter monsoon: the role of black carbon-induced Tibetan Plateau warming. J Geophys Res Atmos. 2017;122:5883–902.

    Article  Google Scholar 

  52. Lou SJ, Yang Y, Wang HL, Smith SJ, Qian Y, Rasch PJ. Black carbon amplifies haze over the North China Plain by weakening the East Asian winter monsoon. Geophys Res Lett. 2019;46:452–60.

    Article  Google Scholar 

  53. Niu F, Li ZQ, Li C, Lee KH, Wang MY. Increase of wintertime fog in China: Potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading. J Geophys Res Atmos. 2010;115:12.

    Article  Google Scholar 

  54. Wang B, Wu ZW, Chang CP, Liu J, Li JP, Zhou TJ. Another look at interannual-to-interdecadal variations of the East Asian winter monsoon: the northern and southern temperature modes. J Clim. 2010;23:1495–512.

    Article  Google Scholar 

  55. Lou S, Yang Y, Wang H, Lu J, Smith SJ, Liu F, et al. Black carbon increases frequency of extreme ENSO events. J Clim. 2019;32:8323–33.

    Article  Google Scholar 

  56. Allen RJ, Evan AT, Booth BBB. Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J Clim. 2015;28:8219–46.

    Article  Google Scholar 

  57. McGregor S, Timmermann A. The effect of explosive tropical volcanism on ENSO. J Clim. 2011;24:2178–91.

    Article  Google Scholar 

  58. Khodri M, Izumo T, Vialard J, Janicot S, Cassou C, Lengaigne M, et al. Tropical explosive volcanic eruptions can trigger El Nino by cooling tropical Africa. Nat Commun. 2017;8:13.

    CAS  Google Scholar 

  59. • Yang Y, Russell LM, Lou S, Lamjiri MA, Liu Y, Singh B, et al. Changes in sea salt emissions enhance ENSO variability. J Clim. 2016;29:8575–88. This article quantified the interactions between sea salt emissions and El Nino-Southern Oscillation.

  60. Allen RJ, Norris JR, Kovilakam M. Influence of anthropogenic aerosols and the Pacific decadal oscillation on tropical belt width. Nat Geosci. 2014;7:270–4.

    Article  CAS  Google Scholar 

  61. Ming Y, Ramaswamy V. Nonlinear climate and hydrological responses to aerosol effects. J Clim. 2009;22:1329–39.

    Article  Google Scholar 

  62. • Cunningham P, Reeder MJ. Severe convective storms initiated by intense wildfires: numerical simulations of pyro-convection and pyro-tornadogenesis. Geophys Res Lett. 2009;36. This work reported and analyzed an intensive wildfire and the subsequent severe storm using large eddy simulation.

  63. Kablick G, Fromm M, Miller S, Partain P, Peterson D, Lee S, et al. The Great Slave Lake PyroCb of 5 August 2014: observations simulations comparisons with regular convection and impact on UTLS water vapor. J Geophys Res Atmos. 2018;123:12332–52.

    Article  Google Scholar 

  64. Christian K, Wang J, Ge C, Peterson D, Hyer E, Yorks J, et al. Radiative forcing and stratospheric warming of pyrocumulonimbus smoke aerosols: first modeling results with multisensor (EPIC CALIPSO and CATS) views from space. Geophys Res Lett. 2019;46:10061–71.

    Article  Google Scholar 

  65. Zhang Y, Fan J, Logan T, Li Z, Homeyer CR. Wildfire impact on environmental thermodynamics and severe convective storms. Geophys Res Lett. 2019;46:10082–93.

    Article  Google Scholar 

  66. Wang Z, Lin L, Yang M, Xu Y. The effect of future reduction in aerosol emissions on climate extremes in China. Clim Dyn. 2016;47:2885–99.

    Article  Google Scholar 

  67. Zhao A, Bollasina MA, Stevenson DS. Strong influence of aerosol reductions on future heatwaves. Geophys Res Lett. 2019;46:4913–23.

    Article  Google Scholar 

  68. Samset BH, Sand M, Smith CJ, Bauer SE, Forster PM, Fuglestvedt JS, et al. Climate impacts from a removal of anthropogenic aerosol emissions. Geophys Res Lett. 2018;45:1020–9.

    Article  CAS  Google Scholar 

  69. Wang Y, Le T, Chen G, Yung YL, Su H, Seinfeld JH, et al. Reduced European aerosol emissions suppress winter extremes over northern Eurasia. Nat Clim Change. 2020;10:225–30.

    Article  CAS  Google Scholar 

  70. •• Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D. Aerosols climate and the hydrological cycle. Science. 2001;294:2119–24. This work comprehensively introduced the effect aerosols on the earth energy budget and hydrological cycle.

  71. Hodnebrog O, Myhre G, Forster PM, Sillmann J, Samset BH. Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa. Nat Commun. 2016;7:11236.

    Article  CAS  Google Scholar 

  72. Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, et al. Smoking rain clouds over the Amazon. Science. 2004;303:1337–42.

    Article  CAS  Google Scholar 

  73. Zhang L, Wu P, Zhou T. Aerosol forcing of extreme summer drought over North China. Environ Res Lett. 2017;12:034020.

    Article  Google Scholar 

  74. Baskar G, Gvt GK. Correlation of aerosol optical depth and spatial rainfall variability patterns for the assessment of meteorological drought. 2016.

  75. Sarthi PP, Kumar S, Barat A, Kumar P, Sinha AK, Goswami V. Linkage of aerosol optical depth with rainfall and circulation parameters over the Eastern Gangetic Plains of India. J Earth Syst Sci. 2019;128.

  76. Huang Y, Chameides WL, Dickinson RE. Direct and indirect effects of anthropogenic aerosols on regional precipitation over east Asia. J Geophys Res. 2007;112.

  77. Tosca MG, Randerson JT, Zender CS. Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation. Atmos Chem Phys. 2013;13:5227–41.

    Article  CAS  Google Scholar 

  78. Menon S, Hansen J, Nazarenko L, Luo Y. Climate effects of black carbon aerosols in China and India. Science. 2002;297:2250–3.

    Article  CAS  Google Scholar 

  79. Hui WJ, Cook BI, Ravi S, Fuentes JD, D’Odorico P. Dust-rainfall feedbacks in the West African sahel. Water Resour Res. 2008;44:6.

    Article  Google Scholar 

  80. Min QL, Li R, Lin B, Joseph E, Wang S, Hu Y, et al. Evidence of mineral dust altering cloud microphysics and precipitation. Atmos Chem Phys. 2009;9:3223–31.

    Article  CAS  Google Scholar 

  81. Yin Y, Chen L. The effects of heating by transported dust layers on cloud and precipitation: a numerical study. Atmos Chem Phys. 2007;7:3497–505.

    Article  CAS  Google Scholar 

  82. Huang JP, Wang TH, Wang WC, Li ZQ, Yan HR. Climate effects of dust aerosols over East Asian arid and semiarid regions. J Geophys Res Atmos. 2014;119:11398–416.

    Article  Google Scholar 

  83. Mitchell JFB, Johns TC. On modification of global warming by sulfate aerosols. J Clim. 1997;10:245–67.

    Article  Google Scholar 

  84. Roeckner E, Bengtsson L, Feichter J, Lelieveld J, Rodhe H. Transient climate change simulations with a coupled atmosphere–ocean GCM including the tropospheric sulfur cycle. J Clim. 1999;12:3004–32.

    Article  Google Scholar 

  85. Wang C. A modeling study on the climate impacts of black carbon aerosols. J Geophys Res Atmos. 2004;109.

  86. Mukai M, Nakajima T. Potentiality of aerosols in changing the precipitation field in Asia. SOLA. 2009;5:97–100.

    Article  Google Scholar 

  87. Koren I, Kaufman YJ, Remer LA, Martins JV. Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science. 2004;303:1342–5.

    Article  CAS  Google Scholar 

  88. Tao W-K, Chen J-P, Li Z, Wang C, Zhang C. Impact of aerosols on convective clouds and precipitation. Rev Geophys. 2012;50.

  89. Rosenfeld D. Flood or Drought: How Do Aerosols Affect Precipitation? Science. 2008;321:1309.

    Article  CAS  Google Scholar 

  90. Vinoj V, Rasch PJ, Wang H, Yoon J-H, Ma P-L, Landu K, et al. Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat Geosci. 2014;7:308–13.

    Article  CAS  Google Scholar 

  91. Tao W-K, Li X, Khain A, Matsui T, Lang S, Simpson J. Role of atmospheric aerosol concentration on deep convective precipitation: cloud-resolving model simulations. J Geophys Res. 2007;112.

  92. Guo J, Deng M, Lee SS, Wang F, Li Z, Zhai P, et al. Delaying precipitation and lightning by air pollution over the Pearl River Delta Part I: observational analyses. J Geophys Res Atmos. 2016;121:6472–88.

    Article  Google Scholar 

  93. Lee SS, Donner LJ, Phillips VTJ, Ming Y. Examination of aerosol effects on precipitation in deep convective clouds during the 1997 ARM summer experiment. Q J R Meteorol Soc. 2008;134:1201–20.

    Article  Google Scholar 

  94. Khain A, Rosenfeld D, Pokrovsky A. Aerosol impact on the dynamics and microphysics of deep convective clouds. Q J R Meteorol Soc. 2005;131:2639–63.

    Article  Google Scholar 

  95. • Fan J, Rosenfeld D, Yang Y, Zhao C, Leung LR, Li Z. Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China. Geophys Res Lett. 2015;42:6066–75. This work showed that aerosol pollution would contribute to suppressed convection and excess moist air transported to mountainous areas, which leads to extreme rainfall.

  96. Huang X, Ding A, Liu L, Liu Q, Ding K, Niu X, et al. Effects of aerosol–radiation interaction on precipitation during biomass-burning season in East China. Atmos Chem Phys. 2016;16:10063–82.

    Article  CAS  Google Scholar 

  97. Jin M. Urban aerosols and their variations with clouds and rainfall: a case study for New York and Houston. J Geophys Res. 2005;110.

  98. Shepherd JM, Burian SJ. Detection of urban-induced rainfall anomalies in a major coastal city. Earth Interact. 2003;7:1–17.

    Article  Google Scholar 

  99. Khain AP. Notes on state-of-the-art investigations of aerosol effects on precipitation: a critical review. Environ Res Lett. 2009;4:015004.

    Article  CAS  Google Scholar 

  100. •• Fan J, Wang Y, Rosenfeld D, Liu X. Review of aerosol–cloud interactions: mechanisms, significance, and challenges. J Atmos Sci. 2016;73:4221–52. The article reviewed theoretical studies and important mechanisms on aerosol-cloud interactions and discussed the significances of aerosol impacts on radiative forcing and precipitation extremes.

  101. • Saide PE, Spak SN, Pierce RB, Otkin JA, Schaack TK, Heidinger AK, et al. Central American biomass burning smoke can increase tornado severity in the US. Geophys Res Lett. 2015;42:956–65. This work suggested the presence of smoke leads to thickening of shallow clouds as well as enhance the capping inversion, favoring tornadogenesis and tornado intensity.

  102. Yang X, Li Z. Increases in thunderstorm activity and relationships with air pollution in southeast China. J Geophys Res Atmos. 2014;119:1835–44.

    Article  CAS  Google Scholar 

  103. Bell TL, Rosenfeld D, Kim K-M, Yoo J-M, Lee M-I, Hahnenberger M. Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms. J Geophys Res. 2008;113.

  104. Lerach DG, Gaudet BJ, Cotton WR. Idealized simulations of aerosol influences on tornadogenesis. Geophys Res Lett. 2008;35.

  105. Cotton WR, Lerach DG. Comparing aerosol and low-level moisture influences on supercell tornadogenesis: three-dimensional idealized simulations. J Atmos Sci. 2012;69:969–87.

    Article  Google Scholar 

  106. Rosenfeld D, Bell TL. Why do tornados and hailstorms rest on weekends? J Geophys Res. 2011;116.

  107. Rosenfeld D, Woodley WL, Khain A, Cotton WR, Carrió G, Ginis I, et al. Aerosol effects on microstructure and intensity of tropical cyclones. Bull Am Meteorol Soc. 2012;93:987–1001.

    Article  Google Scholar 

  108. Wang Y, Lee K-H, Lin Y, Levy M, Zhang R. Distinct effects of anthropogenic aerosols on tropical cyclones. Nat Clim Change. 2014;4:368–73.

    Article  CAS  Google Scholar 

  109. Benmoshe N, Shpund J, Rosenfeld D, Kelman G, Yuan T, Michelson SA, et al. The sensitivity of hurricane Irene to aerosols and ocean coupling: simulations with WRF spectral bin microphysics. J Atmos Sci. 2016;73:467–86.

    Article  Google Scholar 

  110. Khain A, Lynn B, Shpund J. High resolution WRF simulations of Hurricane Irene: Ssensitivity to aerosols and choice of microphysical schemes. Atmos Res. 2016;167:129–45.

    Article  Google Scholar 

  111. Dowdy AJ, Fromm MD, McCarthy N. Pyrocumulonimbus lightning and fire ignition on Black Saturday in southeast Australia. J Geophys Res Atmos. 2017;122:7342–54.

    Article  Google Scholar 

  112. Rosenfeld D, Fromm M, Trentmann J, Luderer G, Andreae MO, Servranckx R. The Chisholm firestorm observed microstructure, precipitation and lightning. Atmos Chem Phys. 2007;7(3):645–59.

    Article  CAS  Google Scholar 

  113. •• Stull RBE. An introduction to boundary layer meteorology. Dordrecht: Springer Netherlands; 1988. This article systematically introduce the fundamental theory and basic physical processes of planetary boundary layer.

  114. Sühring M, Maronga B, Herbort F, Raasch S. On the effect of surface heat-flux heterogeneities on the mixed-layer-top entrainment. Bound Layer Meteorol. 2014;151:531–56.

    Article  Google Scholar 

  115. Myhre G, Samset BH, Schulz M, Balkanski Y, Bauer S, Berntsen TK, et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos Chem Phys. 2013;13:1853–77.

    Article  CAS  Google Scholar 

  116. Huang X, Song Y, Zhao C, Cai X, Zhang H, Zhu T. Direct radiative effect by multicomponent aerosol over China. J Clim. 2015;28:3472–95.

    Article  Google Scholar 

  117. Wang J, Wang S, Jiang J, Ding A, Zheng M, Zhao B, et al. Impact of aerosol–meteorology interactions on fine particle pollution during China’s severe haze episode in January 2013. Environ Res Lett. 2014;9:094002.

    Article  CAS  Google Scholar 

  118. • Ding A, Fu C, Yang X, Sun J, Petäjä T, Kerminen VM, et al. Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China. Atmos Chem Phys. 2013;13:10545–54. This work quantify the impact of air pollution on boundary layer dynamics and aerosol-radiation-cloud feedbacks by comprehensive measurements.

  119. Petaja T, Jarvi L, Kerminen VM, Ding AJ, Sun JN, Nie W, et al. Enhanced air pollution via aerosol-boundary layer feedback in China. Sci Rep. 2016;6:18998.

    Article  CAS  Google Scholar 

  120. Zou J, Sun J, Ding A, Wang M, Guo W, Fu C. Observation-based estimation of aerosol-induced reduction of planetary boundary layer height. Adv Atmos Sci. 2017;34:1057–68.

    Article  CAS  Google Scholar 

  121. Yu H, Liu SC, Dickinson RE. Radiative effects of aerosols on the evolution of the atmospheric boundary layer. J Geophys Res. 2002;107.

  122. Barbaro E, Vilà-Guerau de Arellano J, Krol MC, Holtslag AAM. Impacts of Aerosol shortwave radiation absorption on the dynamics of an idealized convective atmospheric boundary layer. Bound Layer Meteorol. 2013;148:31–49.

    Article  Google Scholar 

  123. Wang Z, Huang X, Ding A. Dome effect of black carbon and its key influencing factors: a one-dimensional modelling study. Atmos Chem Phys. 2018;18:2821–34.

    Article  CAS  Google Scholar 

  124. Wilcox EM, Thomas RM, Praveen PS, Pistone K, Bender FA, Ramanathan V. Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer. Proc Natl Acad Sci USA. 2016;113:11794–9.

    Article  CAS  Google Scholar 

  125. Li Z, Guo J, Ding A, Liao H, Liu J, Sun Y, et al. Aerosol and boundary-layer interactions and impact on air quality. Natl Sci Rev. 2017;4:810–33.

    Article  CAS  Google Scholar 

  126. • Zhong J, Zhang X, Wang Y, Liu C, Dong Y. Heavy aerosol pollution episodes in winter Beijing enhanced by radiative cooling effects of aerosols. Atmos Res. 2018; 209:59–64. This work emphasized the aerosol's radiative cooling effects could exert remarkable impacts on the local synoptic weather and further aggravates aerosol pollution.

  127. Zhong J, Zhang X, Dong Y, Wang Y, Liu C, Wang J, et al. Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016. Atmos Chem Phys. 2018;18:247–58.

    Article  CAS  Google Scholar 

  128. •• Ding AJ, Huang X, Nie W, Sun JN, Kerminen VM, Petäjä T, et al. Enhanced haze pollution by black carbon in megacities in China. Geophys Res Lett. 2016; 43:2873–9. This article showed that absorbing aerosols play the key role in modifying the boundary layer meteorology and hence enhancing the haze pollution.

  129. Zhang B, Wang Y, Hao J. Simulating aerosol–radiation–cloud feedbacks on meteorology and air quality over eastern China under severe haze conditionsin winter. Atmos Chem Phys. 2015;15:2387–404.

    Article  CAS  Google Scholar 

  130. Qu WJ, Wang J, Zhang XY, Wang D, Sheng LF. Influence of relative humidity on aerosol composition: impacts on light extinction and visibility impairment at two sites in coastal area of China. Atmos Res. 2015;153:500–11.

    Article  CAS  Google Scholar 

  131. Zhang Q, Quan J, Tie X, Li X, Liu Q, Gao Y, et al. Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing China. Sci Total Environ. 2015;502:578–84.

    Article  CAS  Google Scholar 

  132. Liu PF, Zhao CS, Göbel T, Hallbauer E, Nowak A, Ran L, et al. Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain. Atmos Chem Phys. 2011;11:3479–94.

    Article  CAS  Google Scholar 

  133. Quan J, Zhang Q, He H, Liu J, Huang M, Jin H. Analysis of the formation of fog and haze in North China Plain (NCP). Atmos Chem Phys. 2011;11:8205–14.

    Article  CAS  Google Scholar 

  134. • Miao Y, Liu S. Linkages between aerosol pollution and planetary boundary layer structure in China. Sci Total Environ. 2019;650:288–96. This article investigated the linkages between boundary layer and aerosols and found PBL structure greatly modulate pollution variabilities.

  135. Liu L, Zhang X, Zhong J, Wang J, Yang Y. The ‘two-way feedback mechanism’ between unfavorable meteorological conditions and cumulative PM2.5 mass existing in polluted areas south of Beijing. Atmos Environ. 2019;208:1–9.

    Article  CAS  Google Scholar 

  136. Huang X, Huang J, Ren C, Wang J, Wang H, Wang J, et al. Chemical boundary layer and its impact on air pollution in Northern China. Environ Sci Technol Lett. 2020;7:826–32.

    Article  CAS  Google Scholar 

  137. Forkel R, Werhahn J, Hansen AB, McKeen S, Peckham S, Grell G, et al. Effect of aerosol-radiation feedback on regional air quality – a case study with WRF/Chem. Atmos Environ. 2012;53:202–11.

    Article  CAS  Google Scholar 

  138. He H, Wang Y, Ma Q, Ma J, Chu B, Ji D, et al. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Sci Rep. 2014;4:4172.

    Article  CAS  Google Scholar 

  139. Zheng GJ, Duan FK, Su H, Ma YL, Cheng Y, Zheng B, et al. Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions. Atmos Chem Phys. 2015;15:2969–83.

    Article  CAS  Google Scholar 

  140. • Huang X, Ding A, Wang Z, Ding K, Gao J, Chai F, et al. Amplified transboundary transport of haze by aerosol–boundary layer interaction in China. Nat Geosci. 2020. This work highlighted the interactions between long-range transport and aerosol-boundary layer feedback during regional haze pollution.

  141. Gao Y, Fu JS, Drake JB, et al. Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system. Environ Res Lett. 2012;7:044025.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (41922038) and the Fundamental Research Funds for the Central Universities (DLTD2107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Huang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Air Pollution

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Xue, L., Liu, J. et al. Roles of Atmospheric Aerosols in Extreme Meteorological Events: a Systematic Review. Curr Pollution Rep 8, 177–188 (2022). https://doi.org/10.1007/s40726-022-00216-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-022-00216-9

Keywords

Navigation