Skip to main content

Advertisement

Log in

The effect of future reduction in aerosol emissions on climate extremes in China

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the effect of reduced aerosol emissions on projected temperature and precipitation extremes in China during 2031–2050 and 2081–2100 relative to present-day conditions using the daily data output from the Community Earth System Model ensemble simulations under the Representative Concentration Pathway (RCP) 8.5 with an applied aerosol reduction and RCP8.5 with fixed 2005 aerosol emissions (RCP8.5_FixA) scenarios. The reduced aerosol emissions of RCP8.5 magnify the warming effect due to greenhouse gases (GHG) and lead to significant increases in temperature extremes, such as the maximum of daily maximum temperature (TXx), minimum of daily minimum temperature (TNn), and tropical nights (TR), and precipitation extremes, such as the maximum 5-day precipitation amount, number of heavy precipitation days, and annual total precipitation from days ˃95th percentile, in China. The projected TXx, TNn, and TR averaged over China increase by 1.2 ± 0.2 °C (4.4 ± 0.2 °C), 1.3 ± 0.2 °C (4.8 ± 0.2 °C), and 8.2 ± 1.2 (30.9 ± 1.4) days, respectively, during 2031–2050 (2081–2100) under the RCP8.5_FixA scenario, whereas the corresponding values are 1.6 ± 0.1 °C (5.3 ± 0.2 °C), 1.8 ± 0.2 °C (5.6 ± 0.2 °C), and 11.9 ± 0.9 (38.4 ± 1.0) days under the RCP8.5 scenario. Nationally averaged increases in all of those extreme precipitation indices above due to the aerosol reduction account for more than 30 % of the extreme precipitation increases under the RCP8.5 scenario. Moreover, the aerosol reduction leads to decreases in frost days and consecutive dry days averaged over China. There are great regional differences in changes of climate extremes caused by the aerosol reduction. When normalized by global mean surface temperature changes, aerosols have larger effects on temperature and precipitation extremes over China than GHG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232. doi:10.1038/nature01092

    Article  Google Scholar 

  • Bindoff NL, Stott PA, AchutaRao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov II, Overland J, Perlwitz J, Sebbari R, Zhang X (2013) Detection and attribution of climate change: from global to regional. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change, chap 10. Cambridge University Press, Cambridge

    Google Scholar 

  • Boer GJ (1993) Climate change and the regulation of the surface moisture and energy budgets. Clim Dyn 8:225–239. doi:10.1007/BF00198617

    Article  Google Scholar 

  • Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh S, Sherwood S, Stevens B, Zhang X (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change, chap 7. Cambridge Universtiy Press, Cambridge

    Google Scholar 

  • Caesar J, Lowe JA (2012) Comparing the impacts of mitigation versus non-intervention scenarios on future temperature and precipitation extremes in the HadGEM2 climate model. J Geophys Res. doi:10.1029/2012JD017762

    Google Scholar 

  • Cassou C, Terray L, Phillips AS (2005) Tropical Atlantic influence on European heat waves. J Clim 18:2805–2811

    Article  Google Scholar 

  • Cofala J, Amann M, Klimont Z, Kupiainen K, Hölund-Isaksson L (2007) Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmos Environ 41:8486–8499

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. doi:10.1126/science.289.5487.2068

    Article  Google Scholar 

  • Fischer EM, Beyerle U, Knutti R (2013) Robust spatially aggregated projections of climate extremes. Nat Clim Change 3:1033–1038. doi:10.1038/nclimate2051

    Article  Google Scholar 

  • Gettelman A, Liu X, Ghan SJ, Morrison H, Park S, Conley AJ, Klein SA, Boyle J, Mitchell DL, Li J-LF (2010) Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the community atmosphere model. J Geophys Res. doi:10.1029/2009JD013797

    Google Scholar 

  • Ghan SJ, Liu X, Easter RC, Zaveri R, Rasch PJ, Yoon J-H, Eaton B (2012) Toward a minimal representation of aerosols in climate models: comparative decomposition of aerosol direct, semi-direct and indirect radiative forcing. J Clim 25:6461–6476. doi:10.1175/JCLI-D-11-00650.1

    Article  Google Scholar 

  • Guo L, Highwood EJ, Shaffrey LC, Turner AG (2013) The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian Summer Monsoon. Atmos Chem Phys 13:1521–1534. doi:10.5194/acp-13-1521-2013

    Article  Google Scholar 

  • Haylock MR, Goodness CM (2004) Inter-annual variability of European extreme winter rainfall and links with mean large-scale circulation. Int J Climatol 24:759–776

    Article  Google Scholar 

  • Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque J-F, Large WG, Lawrence D, Lindsay K, Lipscomb WH, Long MC, Mahowald N, Marsh DR, Neale RB, Rasch P, Vavrus S, Vertenstein M, Bader D, Collins WD, Hack JJ, Kiehl J, Marshall S (2013) The Community Earth System model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360. doi:10.1175/BAMS-D-12-00121.1

    Article  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ji Z, Kang S (2015) Evaluation of extreme climate events using a regional climate model for China. Int J Climatol 35:888–902

    Article  Google Scholar 

  • Jones GS, Stott PA, Christidis N (2008) Human contribution to rapidly increasing frequency of very warm Northern Hemisphere summers. J Geophys Res. doi:10.1029/2007JD008914

    Google Scholar 

  • Kay JE, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster J, Bates S, Danabasoglu G, Edwards J, Holland M, Kushner P, Lamarque J-F, Lawrence D, Lindsay K, Middleton A, Munoz E, Neale R, Oleson K, Polvani L, Vertenstein M (2014) The Community Earth System Model (CESM1) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96:1333–1349. doi:10.1175/BAMS-D-13-00255.1

    Article  Google Scholar 

  • Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Change 119:345–357. doi:10.1007/s10584-013-0705-8

    Article  Google Scholar 

  • Lin L, Gettelman A, Xu Y, Fu Q (2015) Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols. Clim Change (accepted)

  • Liu X, Easter RC, Ghan SJ, Zaveri R, Rasch P, Shi X, Lamarque J-F, Gettelman A, Morrison H, Vitt F, Conley A, Park S, Neale R, Hannay C, Ekman AML, Hess P, Mahowald N, Collins W, Iacono MJ, Bretherton CS, Flanner MG, Mitchell D (2012) Towards a minimal representation of aerosol direct and indirect effects: model description and evaluation. Geosci Model Dev 5:709–735. doi:10.5194/gmd-4-709-2012

    Article  Google Scholar 

  • Mascioli NR, Fiore AM, Previdi M, Correa G (2015) Temperature and precipitation extremes in the United States: quantifying the responses to anthropogenic aerosols and greenhouse gases. J Clim. doi: 10.1175/JCLI-D-15-0478.1

  • Morak S, Hegerl GC, Christidis N (2012) Detectable changes in the frequency of temperature extremes. J Clim 26:1561–1574. doi:10.1175/JCLI-D-11-00678.1

    Article  Google Scholar 

  • Morrison H, Gettelman A (2008) A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: description and numerical tests. J Clim 21(15):3642–3659

    Article  Google Scholar 

  • Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  Google Scholar 

  • Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Riahi K, Gruebler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74(7):887–935

    Article  Google Scholar 

  • Rotstayn LD, Collier MA, Chrastansky A, Jeffrey SJ, Luo J-J (2013) Projected effects of declining aerosols in RCP4.5: unmasking global warming? Atmos Chem Phys 13:10883–10905. doi:10.5194/acp-13-10883-2013

    Article  Google Scholar 

  • Shindell D, Lamarque J-F, Unger N, Koch D, Faluvegi G, Bauer S, Ammann M, Cofala J, Teich H (2008) Climate forcing and air quality change due to regional emissions reductions by economic sector. Atmos Chem Phys 8:7101–7113. doi:10.5194/acp-8-7101-2008

    Article  Google Scholar 

  • Sillmann J, Roeckner E (2008) Indices for extreme events in projections of anthropogenic climate change. Clim Change 86:83–104. doi:10.1007/s10584-007-9308-6

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013a) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res 118:2473–2493. doi:10.1002/jgrd.50188

    Google Scholar 

  • Sillmann J, Pozzoli L, Vignati E, Kloster S, Feichter J (2013b) Aerosol effect on climate extremes in Europe under different future scenarios. Geophys Res Lett 40:2290–2295. doi:10.1002/grl.50459

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013c) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res 118:1716–1733. doi:10.1002/jgrd.50203

    Google Scholar 

  • Stott PA, Jones GS, Christidis N, Zwiers FW, Hegerl G, Shiogama H (2011) Single-step attribution of increasing frequencies of very warm regional temperatures to human influence. Atmos Sci Lett 12(2):220–227. doi:10.1002/asl.315

    Article  Google Scholar 

  • Sun Y, Zhang X, Zwiers FW, Song L, Wan H, Hu T, Yin H, Ren G (2014) Rapid increase in the risk of extreme summer heat in Eastern China. Nat Clim Change 4:1082–1085. doi:10.1038/nclimate2410

    Article  Google Scholar 

  • Wang ZL, Zhang H, Zhang XY (2015a) Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect. Atmos Chem Phys 15:3671–3685. doi:10.5194/acp-15-3671-2015

    Article  Google Scholar 

  • Wang ZL, Zhang H, Zhang XY (2015b) Projected response of East Asian summer monsoon system to future reductions in emissions of anthropogenic aerosols and their precursors. Clim Dyn. doi:10.1007/s00382-015-2912-7

    Google Scholar 

  • Wen QH, Zhang X, Xu Y, Wang B (2013) Detecting human influence on extreme temperatures in China. Geophys Res Lett. doi:10.1002/grl.50285

    Google Scholar 

  • Wu J, Gao XJ (2013) A gridded daily observation dataset over China region and comparison with the other datasets. Chin J Geophys 56:1102–1111

    Google Scholar 

  • Xu Y, Gao X, Shen Y, Xu C, Shi Y, Giorgi F (2009) A daily temperature dataset over China and its application in validating a RCM simulation. Adv Atmos Sci 26:763–772. doi:10.1007/s00376-009-9029-z

    Article  Google Scholar 

  • Xu Y, Lamarque J-F, Sanderson B (2015) The importance of aerosol scenarios in projections of future heat extremes. Clim Change. doi:10.1007/s10584-015-1565-1

    Google Scholar 

  • You QL, Kang SC, Aguilar E, Pepin N, Flugel WA, Yan YP (2011) Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim Dyn 36:2399–2417

    Article  Google Scholar 

  • Zhai P, Zhang X, Wan H, Pan X (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18:1096–1108. doi:10.1175/JCLI-3318.1

    Article  Google Scholar 

  • Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change 2:851–870. doi:10.1002/wcc.147

    Article  Google Scholar 

  • Zhang H, Wang ZL, Wang ZZ, Liu Q, Gong S, Zhang X-Y, Shen Z, Lu P, Wei X, Che H, Li L (2012) Simulation of direct radiative forcing of typical aerosols and their effects on global climate using an online AGCM-aerosol coupled model system. Clim Dyn 38:1675–1693

    Article  Google Scholar 

  • Zhou BT, Wen QH, Xu Y, Song L, Zhang X (2014) Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J Clim 27:6591–6611. doi:10.1175/JCLI-D-13-00761.1

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Andrew Gettelman for his helpful suggestions on the manuscript. This work was supported by the National Natural Science Foundation of China (41575139 and 41305025), Public Meteorology Special Foundation of MOST (GYHY201406023), and MOST (2014BAC16B01). The National Center for Atmospheric Research is supported by the U.S. National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhili Wang.

Additional information

Zhili Wang and Lei Lin have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Lin, L., Yang, M. et al. The effect of future reduction in aerosol emissions on climate extremes in China. Clim Dyn 47, 2885–2899 (2016). https://doi.org/10.1007/s00382-016-3003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3003-0

Keywords

Navigation