Skip to main content
Log in

Understanding the Role of Nanoparticles in Nano-oil Lubrication

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A disc-on-disc type tester was used to examine the role of fullerene nanoparticles dispersed in a mineral oil-based lubricant. In the friction test, the friction coefficient of the disc specimen immersed in the nano-oil was significantly lower than that of the disc specimen immersed in the mineral oil. This suggests that the nanoparticles dispersed in mineral oil played the important role in the lubrication enhancement of nano-oil. A series of experiments in this study were carried out to delineate the two effects [i.e., direct effect (e.g., rolling/sliding/filming) and surface enhancement effect (e.g., mending/polishing)] of nanoparticles for nano-oil-based lubrication enhancement. The disc specimens immersed in the nano-oils during the friction test was removed, and then they were re-immersed in new mineral oil for an additional friction test. The direct and surface enhancement effect of nanoparticles was then visualised by the evolution of the friction coefficient of the disc specimen immersed in the mineral- and nano-oil. The results showed that the direct effect of nanoparticles was much more dependent on the magnitude of the applied normal load than the surface enhancement effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rapoport, L., Leshchinsky, V., Lvovsky, M., Nepomnyashchy, O., Volovik, Y., Tenne, R.: Mechanism of friction of fullerenes. Ind. Lubr. Tribol. 54, 171–176 (2002)

    Article  Google Scholar 

  2. Wu, Y.Y., Tsui, W.C., Liu, T.C.: Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 262, 819–825 (2007). doi:10.1016/j.wear.2006.08.021

    Article  CAS  Google Scholar 

  3. Chin˜as-Castillo, F., Spikes, H.A.: Mechanism of action of colloidal solid dispersions. J. Tribol. 125, 552–557 (2003)

    Article  Google Scholar 

  4. Hu, Z.S., Lai, R., Lou, F., Wang, L.G., Chen, Z.L., Chen, G.X., Dong, J.X.: Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive. Wear 252, 370–374 (2002). doi:10.1016/S0043-1648(01)00862-6

    Article  CAS  Google Scholar 

  5. Xiaodong, Z., Xun, F., Huaqiang, S., Zhengshui, H.: Lubricating properties of Cyanex 302-modified MoS2 microspheres in base oil 500SN. Lubr. Sci. 19, 71–79 (2007)

    Article  Google Scholar 

  6. Ginzburg, B.M., Shibaev, L.A., Kireenko, O.F., Shepelevskii, A.A., Baidakova, M.V., Sitnikova, A.A.: Antiwear effect of fullerene C60 additives to lubricating oils. Russ. J. Appl. Chem. 75(8), 1330–1335 (2002)

    Article  CAS  Google Scholar 

  7. Zhou, J., Yang, J., Zhang, Z., Liu, W., Xue, Q.: Study on the structure and tribological properties of surface-modified Cu nanoparticles. Mater. Res. Bull. 34(9), 1361–1367 (1999)

    Article  CAS  Google Scholar 

  8. Rastogi, R.B., Yadav, M., Bhattacharya, A.: Application of molybdenum complexes of 1-aryl-2,5-dithiohydrazodicarbonamides as extreme pressure lubricant additives. Wear 252, 686–692 (2002). doi:10.1016/S0043-1648(01)00878-X

    Article  CAS  Google Scholar 

  9. Liu, G., Li, X., Qin, B., Xing, D., Guo, Y., Fan, R.: Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol. Lett. 17, 4 (2004). doi:10.1007/s11249-004-8109-6

    Article  CAS  Google Scholar 

  10. Tao, X., Jiazheng, Z., Kang, X.: The ball-bearing effect of diamond nanoparticles as an oil additive. J. Phys. D Appl. Phys. 29, 2932–2937 (1996). doi:10.1088/0022-3727/29/11/029

    Article  ADS  CAS  Google Scholar 

  11. Liu, G., Li, X., Lu, N., Fan, R.: Enhancing AW/EP property of lubricant oil by adding nano Al/Sn particles. Tribol. Lett. 18(1), 85–90 (2004)

    Article  Google Scholar 

  12. Greenberg, R., Halperin, G., Etsion, I., Tenne, R.: The effect of WS2 nanoparticles on friction reduction in various lubrication regimes. Tribol. Lett. 17(2), 179–186 (2004)

    Article  CAS  Google Scholar 

  13. Qiu, S., Zhou, Z., Dong, J., Chen, G.: Preparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oils. J. Tribol. 123, 441–443 (2001). doi:10.1115/1.1286152

    Article  CAS  Google Scholar 

  14. Hu, Z.S., Dong, J.X.: Study on antiwear and reducing friction additive of nanometer titanium borate. Wear 216, 87–91 (1998). doi:10.1016/S0043-1648(97)00249-4

    Article  CAS  Google Scholar 

  15. Hu, Z.S., Dong, J.X.: Study on antiwear and reducing friction additive of nanometer titanium borate. Wear 216, 92–96 (1998). doi:10.1016/S0043-1648(97)00252-4

    Article  CAS  Google Scholar 

  16. Xue, Q., Liu, W., Zhang, Z.: Friction and wear properties of a surface-modified TiO2 nanoparticle as an additive in liquid paraffin. Wear 213, 29–32 (1997). doi:10.1016/S0043-1648(97)00200-7

    Article  CAS  Google Scholar 

  17. Rapoport, L., Leshchinsky, V., Lapsker, I., Volovik, Y., Nepomnyashchy, O., Lvovsky, M., Popovitz-Biro, R., Feldman, Y., Tenne, R.: Tribological properties of WS2 nanoparticles under mixed lubrication. Wear 255, 785–793 (2003). doi:10.1016/S0043-1648(03)00044-9

    Article  CAS  Google Scholar 

  18. Liu, W., Chen, S.: An investigation of the tribological behaviour of surface-modified ZnS nanoparticles in liquid paraffin. Wear 238, 120–124 (2000). doi:10.1016/S0043-1648(99)00344-0

    Article  CAS  Google Scholar 

  19. Zhou, J., Wu, Z., Zhang, Z., Liu, W., Dang, H.: Study on an antiwear and extreme pressure additive of surface coated LaF3 nanoparticles in liquid paraffin. Wear 249, 333–337 (2001). doi:10.1016/S0043-1648(00)00547-0

    Article  CAS  Google Scholar 

  20. Hu, Z.S., Dong, J.X., Chen, G.X.: Study on antiwear and reducing friction additive of nanometer ferric oxide. Tribol. Int. 31(7), 355–360 (1998)

    Article  CAS  Google Scholar 

  21. Chen, S., Liu, W., Yu, L.: Preparation of DDP-coated PbS nanoparticles and investigation of the antiwear ability of the prepared nanoparticles as additive in liquid paraffin. Wear 218, 153–158 (1998). doi:10.1016/S0043-1648(98)00220-8

    Article  CAS  Google Scholar 

  22. Lee, J.K., Cho, S.W., Hwang, Y.J., Cho, H.J., Lee, C.G., Choi, Y.M., Ku, B.C., Lee, H.K., Lee, B.C., Kim, D.H., Kim, S.H.: Application of fullerene-added nano-oil for lubrication enhancement in friction surfaces. Tribol. Int. 42, 440–447 (2009)

    Article  CAS  Google Scholar 

  23. Kline, S.J., McClintock, F.A.: Describing uncertainties in single-sample experiments. Mech. Eng. 75, 3–8 (1953)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Hyung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Hwang, Y., Cheong, S. et al. Understanding the Role of Nanoparticles in Nano-oil Lubrication. Tribol Lett 35, 127–131 (2009). https://doi.org/10.1007/s11249-009-9441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9441-7

Keywords

Navigation