Skip to main content
Log in

Abstract

Multi-material 3D printing with electrically functional materials including conducting, sensing, insulating and semiconducting materials has led to the development of smart devices such as 3D structural electronics, sensors, batteries, etc. Electronically smart devices are a hot issue in 3D printing because they can certainly benefit from 3D printing technology, providing high design flexibility and customized functions. Shape-changing materials (e.g. shape memory polymers) incorporated in 3D printing have given birth to 4D printing, where 3D printed structures change in their shapes by external stimuli (temperature, light, water, etc.). The motivation of this review paper is to discuss mutual benefits from both 3D printed smart devices and 4D printed features, which can be built in a single body. It is expected that the combination of 3D printed smart devices and 4D printing would contribute to the development of high performance, adaptability to the environment and programmable 3D smart devices, which have not yet existed. This paper has reviewed the background of 3D printing, smart device fabrication using 3D printing, development into 4D printing, and future applications of 4D printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogue, R., “3D Printing: The Dawn of a New Era in Manufacturing?” Assembly Automation, Vol. 33, No. 4, pp. 307–311, 2013.

    Article  Google Scholar 

  2. Hoy, M. B., “3D Printing: Making Things at the Library,” Medical Reference Services Quarterly, Vol. 32, No. 1, pp. 93–99, 2013.

    Article  Google Scholar 

  3. Vehse, M. and Seitz, H., “A New Micro-Stereolithography-System Based on Diode Laser Curing (DLC),” Int. J. Precis. Eng. Manuf., Vol. 15, No. 10, pp. 2161–2166, 2014.

    Article  Google Scholar 

  4. Weller, C., Kleer, R., and Piller, F. T., “Economic Implications of 3D Printing: Market Structure Models in Light of Additive Manufacturing Revisited,” International Journal of Production Economics, Vol. 164, pp. 43–56, 2015.

    Article  Google Scholar 

  5. Prasad, D., “Additive Manufacturing-A Brief Foray into the Advancements in Manufacturing Technologies,” International Journal of Advance Industrial Engineering, Vol. 3, pp. 115–119, 2015.

    Google Scholar 

  6. Ho, C. M. B., Ng, S. H., and Yoon, Y.-J., “A Review on 3D Printed Bioimplants,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 5, pp. 1035–1046, 2015.

    Article  Google Scholar 

  7. Moon, S. K., Tan, Y. E., Hwang, J., and Yoon, Y.-J., “Application of 3D Printing Technology for Designing Light-Weight Unmanned Aerial Vehicle Wing Structures,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 3, pp. 223–228, 2014.

    Article  Google Scholar 

  8. Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., et al., “Smart Manufacturing: Past Research, Present Findings, and Future Directions,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 1, pp. 111–128, 2016.

    Article  Google Scholar 

  9. Wang, X., Jiang, M., Zhou, Z., Gou, J., and Hui, D., “3D Printing of Polymer Matrix Composites: A Review and Prospective,” Composites Part B: Engineering, Vol. 110, pp. 442–458, 2017.

    Article  Google Scholar 

  10. Yuan, S., Bai, J., Chua, C. K., Wei, J., and Zhou, K., “Material Evaluation and Process Optimization of CNT-Coated Polymer Powders for Selective Laser Sintering,” Polymers, Vol. 8, No. 10, p. 370, 2016.

    Article  Google Scholar 

  11. Tan, W. S., Chua, C. K., Chong, T. H., Fane, A. G., and Jia, A., “3D Printing by Selective Laser Sintering of Polypropylene Feed Channel Spacers for Spiral Wound Membrane Modules for the Water Industry,” Virtual and Physical Prototyping, Vol. 11, No. 3, pp. 151–158, 2016.

    Article  Google Scholar 

  12. Leong, K., Chua, C., and Gui, W., “Building Porous Biopolymeric Microstructures for Controlled Drug Delivery Devices Using Selective Laser Sintering,” The International Journal of Advanced Manufacturing Technology, Vol. 31, No. 5, pp. 483–489, 2006.

    Article  Google Scholar 

  13. Trachtenberg, J. E., Placone, J. K., Smith, B. T., Piard, C. M., Santoro, M., et al., “Extrusion-Based 3D Printing of Poly (Propylene Fumarate) in a Full-Factorial Design,” ACS Biomaterials Science & Engineering, Vol. 2, No. 10, pp. 1771–1780, 2016.

    Article  Google Scholar 

  14. Melocchi, A., Parietti, F., Maroni, A., Foppoli, A., Gazzaniga, A., and Zema, L., “Hot-Melt Extruded Filaments Based on Pharmaceutical Grade Polymers for 3D Printing by Fused Deposition Modeling,” International Journal of Pharmaceutics, Vol. 509, No. 1, pp. 255–263, 2016.

    Article  Google Scholar 

  15. Gao, G., Schilling, A. F., Hubbell, K., Yonezawa, T., Truong, D., et al., “Improved Properties of Bone and Cartilage Tissue from 3D Inkjet-Bioprinted Human Mesenchymal Stem Cells by Simultaneous Deposition and Photocrosslinking in Peg-Gelma,” Biotechnology Letters, Vol. 37, No. 11, pp. 2349–2355, 2015.

    Article  Google Scholar 

  16. Deiner, L. J. and Farjami, E., “Diffuse Reflectance Infrared Spectroscopic Identification of Dispersant/Particle Bonding Mechanisms in Functional inks,” Journal of Visualized Experiments, No. 99, DOI: 10.3791/52744, 2015.

    Google Scholar 

  17. Fantino, E., Chiappone, A., Roppolo, I., Manfredi, D., Bongiovanni, R., et al., “3D Printing of Conductive Complex Structures with in Situ Generation of Silver Nanoparticles,” Advanced Materials, Vol. 28, No. 19, pp. 3712–3717, 2016.

    Article  Google Scholar 

  18. Price, A. D., “Photopolymerization of 3D Conductive Polypyrrole Structures Via Digital Light Processing,” Proc. of the International Society for Optics and Photonics on Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, pp. 97981A-1-7, 2016.

    Google Scholar 

  19. Katstra, W., Palazzolo, R., Rowe, C., Giritlioglu, B., Teung, P., et al., “Oral Dosage Forms Fabricated by Three Dimensional Printing™,” Journal of Controlled Release, Vol. 66, No. 1, pp. 1–9, 2000.

    Article  Google Scholar 

  20. Seitz, H., Rieder, W., Irsen, S., Leukers, B., and Tille, C., “Three-Dimensional Printing of Porous Ceramic Scaffolds for Bone Tissue Engineering,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 74, No. 2, pp. 782–788, 2005.

    Article  Google Scholar 

  21. Joe Lopes, A., MacDonald, E., and Wicker, R. B., “Integrating Stereolithography and Direct Print Technologies for 3D Structural Electronics Fabrication,” Rapid Prototyping Journal, Vol. 18, No. 2, pp. 129–143, 2012.

    Article  Google Scholar 

  22. Palmer, J., Jokiel, B., Nordquist, C., Kast, B., Atwood, C., et al., “Mesoscale RF Relay Enabled By Integrated Rapid Manufacturing,” Rapid Prototyping Journal, Vol. 12, No. 3, pp. 148–155, 2006.

    Article  Google Scholar 

  23. Espalin, D., Muse, D. W., MacDonald, E., and Wicker, R. B., “3D Printing Multifunctionality: Structures with Electronics,” The International Journal of Advanced Manufacturing Technology, Vol. 72, Nos. 5-8, pp. 963–978, 2014.

    Article  Google Scholar 

  24. Lee, J., Emon, M. O. F., Vatani, M., and Choi, J.-W., “Effect of Degree of Crosslinking and Polymerization of 3D Printable Polymer/Ionic Liquid Composites on Performance of Stretchable Piezoresistive Sensors,” Smart Materials and Structures, Vol. 26, No. 3, Paper No. 035043, 2017.

    Google Scholar 

  25. Ge, Q., Qi, H. J., and Dunn, M. L., “Active Materials by Four-Dimension Printing,” Applied Physics Letters, Vol. 103, No. 13, Paper No. 131901, 2013.

    Google Scholar 

  26. Ge, Q., Dunn, C. K., Qi, H. J., and Dunn, M. L., “Active Origami by 4D Printing,” Smart Materials and Structures, Vol. 23, No. 9, Paper No. 094007, 2014.

    Google Scholar 

  27. Choi, J., Kwon, O.-C., Jo, W., Lee, H. J., and Moon, M.-W., “4D Printing Technology: A Review,” 3D Printing and Additive Manufacturing, Vol. 2, No. 4, pp. 159–167, 2015.

    Article  Google Scholar 

  28. Sitthi-Amorn, P., Ramos, J. E., Wangy, Y., Kwan, J., Lan, J., et al., “Multifab: A Machine Vision Assisted Platform for Multi-Material 3D Printing,” ACM Transactions on Graphics, Vol. 34, No. 4, p. 129, 2015.

    Article  Google Scholar 

  29. Kokkinis, D., Schaffner, M., and Studart, A. R., “Multimaterial Magnetically Assisted 3D Printing of Composite Materials,” Nature Communications, Vol. 6, Article No. 8643, 2015.

    Google Scholar 

  30. Bartlett, N. W., Tolley, M. T., Overvelde, J. T., Weaver, J. C., Mosadegh, B., et al., “A 3D-Printed, Functionally Graded Soft Robot Powered by Combustion,” Science, Vol. 349, No. 6244, pp. 161–165, 2015.

    Article  Google Scholar 

  31. Vatani, M. and Choi, J.-W., “Direct-Print Photopolymerization for 3D Printing,” Rapid Prototyping Journal, Vol. 23, No. 2, pp. 337–343, 2017.

    Article  Google Scholar 

  32. Govindarajan, S. R., Xu, Y., Swanson, J. P., Jain, T., Lu, Y., et al., “A Solvent and Initiator Free, Low-Modulus, Degradable Polyester Platform with Modular Functionality for Ambient-Temperature 3D Printing,” Macromolecules, Vol. 49, No. 7, pp. 2429–2437, 2016.

    Article  Google Scholar 

  33. Leigh, S. J., Bradley, R. J., Purssell, C. P., Billson, D. R., and Hutchins, D. A., “A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors,” PloS One, Vol. 7, No. 11, DOI: 10.1371/journal.pone.0049365, 2012.

    Google Scholar 

  34. Woodfield, T. B., Malda, J., De Wijn, J., Peters, F., Riesle, J., et al., “Design of Porous Scaffolds for Cartilage Tissue Engineering Using a Three-Dimensional Fiber-Deposition Technique,” Biomaterials, Vol. 25, No. 18, pp. 4149–4161, 2004.

    Article  Google Scholar 

  35. Nikzad, M., Masood, S., and Sbarski, I., “Thermo-Mechanical Properties of a Highly Filled Polymeric Composites for Fused Deposition Modeling,” Materials & Design, Vol. 32, No. 6, pp. 3448–3456, 2011.

    Article  Google Scholar 

  36. Choi, J.-W., Kim, H.-C., and Wicker, R., “Multi-Material Stereolithography,” Journal of Materials Processing Technology, Vol. 211, No. 3, pp. 318–328, 2011.

    Article  Google Scholar 

  37. Hon, K., Li, L., and Hutchings, I., “Direct Writing Technology-Advances and Developments,” CIRP Annals-Manufacturing Technology, Vol. 57, No. 2, pp. 601–620, 2008.

    Article  Google Scholar 

  38. Smay, J. E., Cesarano III, J., Tuttle, B. A., and Lewis, J. A., “ Piezoelectric Properties of 3-X Periodic Pb(ZrxTi1-x)O-3-Polymer Composites,” Journal of Applied Physics, Vol. 92, No. 10, pp. 6119–6127, 2002.

    Article  Google Scholar 

  39. Song, J. H., Edirisinghe, M. J., and Evans, J. R., “Formulation and Multilayer Jet Printing of Ceramic Inks,” Journal of the American Ceramic Society, Vol. 82, No. 12, pp. 3374–3380, 1999.

    Article  Google Scholar 

  40. Lewis, J. A., “Direct Ink Writing of 3D Functional Materials,” Advanced Functional Materials, Vol. 16, No. 17, pp. 2193–2204, 2006.

    Article  Google Scholar 

  41. Seerden, K. A., Reis, N., Evans, J. R., Grant, P. S., Halloran, J. W., et al., “Ink-Jet Printing of Wax-Based Alumina Suspensions,” Journal of the American Ceramic Society, Vol. 84, No. 11, pp. 2514–2520, 2001.

    Article  Google Scholar 

  42. Hon, K., Li, L., and Hutchings, I., “Direct Writing Technology-Advances and Developments,” CIRP Annals-Manufacturing Technology, Vol. 57, No. 2, pp. 601–620, 2008.

    Article  Google Scholar 

  43. Kim, M.-S., Chu, W.-S., Kim, Y.-M., Avila, A. P. G., and Ahn, S.-H., “Direct Metal Printing of 3D Electrical Circuit Using Rapid Prototyping,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 5, pp. 147–150, 2009.

    Article  Google Scholar 

  44. Layani, M., Cooperstein, I., and Magdassi, S., “UV Crosslinkable Emulsions with Silver Nanoparticles for Inkjet Printing of Conductive 3D Structures,” Journal of Materials Chemistry C, Vol. 1, No. 19, pp. 3244–3249, 2013.

    Article  Google Scholar 

  45. Zhu, C., Han, T. Y.-J., Duoss, E. B., Golobic, A. M., Kuntz, J. D., et al., “Highly Compressible 3D Periodic Graphene Aerogel Microlattices,” Nature Communications, Vol. 6, Article No. 6962, 2015.

    Google Scholar 

  46. Jakus, A. E., Secor, E. B., Rutz, A. L., Jordan, S. W., Hersam, M. C., et al., “Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications,” ACS Nano, Vol. 9, No. 4, pp. 4636–4648, 2015.

    Article  Google Scholar 

  47. Duoss, E., Ahn, B. Y., Malkowski, T., Adams, J., Bernhard, J., et al, “Direct-Write Assembly of Functional Inks for Planar and 3D Microstructures,” https://e-reports-ext.llnl.gov/pdf/501646.pdf (Accessed 23 JUN 2017)

    Google Scholar 

  48. Palmer, J. A., Davis, D. W., Chavez, B. D., Gallegos, P. L., Wicker, R. B., et al., “Methods and Systems for Rapid Prototyping of High Density Circuits,” US Patents, 7419630 B2, 2008.

    Google Scholar 

  49. Medina, F., Lopes, A., Inamdar, A., Hennessey, R., Palmer, J., et al., “Hybrid Manufacturing: Integrating Direct-Write and Stereolithography,” Proc. of the 2005 Solid Freeform Fabrication, pp. 129–143, 2005.

    Google Scholar 

  50. Adams, J. J., Duoss, E. B., Malkowski, T. F., Motala, M. J., Ahn, B. Y., et al., “Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces,” Advanced Materials, Vol. 23, No. 11, pp. 1335–1340, 2011.

    Article  Google Scholar 

  51. Blumenthal, T., Fratello, V., Nino, G., and Ritala, K., “Conformal Printing of Sensors on 3D and Flexible Surfaces Using Aerosol Jet Deposition,” SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, DOI: 10.1117/12.2009278, 2013.

    Book  Google Scholar 

  52. Saari, M., Cox, B., Richer, E., Krueger, P. S., and Cohen, A. L., “Fiber Encapsulation Additive Manufacturing: An Enabling Technology for 3D Printing of Electromechanical Devices and Robotic Components,” 3D Printing and Additive Manufacturing, Vol. 2, No. 1, pp. 32–39, 2015.

    Article  Google Scholar 

  53. Saari, M., Galla, M., Cox, B., Richer, E., Krueger, P., et al., “Active Device Fabrication Using Fiber Encapsulation Additive Manufacturing,” Proc of the International Solid Freeform Fabrication Symposium, pp. 26–39, 2015.

    Google Scholar 

  54. Muth, J. T., Vogt, D. M., Truby, R. L., Mengüç, Y., Kolesky, D. B., et al., “Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers,” Advanced Materials, Vol. 26, No. 36, pp. 6307–6312, 2014.

    Article  Google Scholar 

  55. Vatani, M., Lu, Y., Engeberg, E. D., and Choi, J.-W., “Combined 3D Printing Technologies and Material for Fabrication of Tactile Sensors,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1375–1383, 2015.

    Article  Google Scholar 

  56. Ota, H., Emaminejad, S., Gao, Y., Zhao, A., Wu, E., et al., “Application of 3D Printing for Smart Objects with Embedded Electronic Sensors and Systems,” Advanced Materials Technologies, DOI: 10.1002/admt.201600013, 2016.

    Google Scholar 

  57. Wu, S.-Y., Yang, C., Hsu, W., and Lin, L., “3D-Printed Microelectronics for Integrated Circuitry and Passive Wireless Sensors,” Microsystems & Nanoengineering, Vol. 1, Article No. 15013, 2015.

    Google Scholar 

  58. Lu, Y., Yun, H.-Y., Vatani, M., Kim, H.-C., and Choi, J.-W., “Direct-Print/Cure as a Molded Interconnect Device (MID) Process for Fabrication of Automobile Cruise Controllers,” Journal of Mechanical Science and Technology, Vol. 29, No. 12, pp. 5377–5385, 2015.

    Article  Google Scholar 

  59. Laszczak, P., Jiang, L., Bader, D. L., Moser, D., and Zahedi, S., “Development and Validation of a 3D-Printed Interfacial Stress Sensor for Prosthetic Applications,” Medical Engineering & Physics, Vol. 37, No. 1, pp. 132–137, 2015.

    Article  Google Scholar 

  60. Saari, M., Xia, B., Cox, B., Krueger, P. S., Cohen, A. L., et al., “Fabrication and Analysis of a Composite 3D Printed Capacitive Force Sensor,” 3D Printing and Additive Manufacturing, Vol. 3, No. 3, pp. 136–141, 2016.

    Article  Google Scholar 

  61. Guo, S.-Z., Yang, X., Heuzey, M.-C., and Therriault, D., “3D Printing of a Multifunctional Nanocomposite Helical Liquid Sensor,” Nanoscale, Vol. 7, No. 15, pp. 6451–6456, 2015.

    Article  Google Scholar 

  62. Emon, M. O. F. and Choi, J.-W., “Flexible Piezoresistive Sensors Embedded in 3D Printed Tires,” Sensors, Vol. 17, No. 3, p. 656, 2017.

    Article  Google Scholar 

  63. Long, J. W., Dunn, B., Rolison, D. R., and White, H. S., “Three-Dimensional Battery Architectures,” Chemical Reviews, Vol. 104, No. 10, pp. 4463–4492, 2004.

    Article  Google Scholar 

  64. Sun, K., Wei, T. S., Ahn, B. Y., Seo, J. Y., Dillon, S. J., et al., “3D Printing of Interdigitated Li-Ion Microbattery Architectures,” Advanced Materials, Vol. 25, No. 33, pp. 4539–4543, 2013.

    Article  Google Scholar 

  65. Fu, K., Wang, Y., Yan, C., Yao, Y., Chen, Y., et al., “Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries,” Advanced Materials, Vol. 28, No. 13, pp. 2587–2594, 2016.

    Article  Google Scholar 

  66. Zhu, C., Liu, T., Qian, F., Han, T. Y.-J., Duoss, E. B., et al., “Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores,” Nano Letters, Vol. 16, No. 6, pp. 3448–3456, 2016.

    Article  Google Scholar 

  67. Foster, C. W., Down, M. P., Zhang, Y., Ji, X., Rowley-Neale, S. J., et al., “3D Printed Graphene Based Energy Storage Devices,” Scientific Reports, Vol. 7, Article No. 42233, 2017.

    Google Scholar 

  68. Mu, Q., Dunn, C. K., Wang, L., Dunn, M. L., Qi, H. J., et al., “Thermal Cure Effects on Electromechanical Properties of Conductive Wires by Direct Ink Write for 4D Printing and Soft Machines,” Smart Materials and Structures, Vol. 26, No. 4, Paper No. 045008, 2017.

    Google Scholar 

  69. Pei, E., “4D Printing: Dawn of an Emerging Technology Cycle,” Assembly Automation, Vol. 34, No. 4, pp. 310–314, 2014.

    Article  Google Scholar 

  70. Tibbits, S., “4D Printing: Multi-Material Shape Change,” Architectural Design, Vol. 84, No. 1, pp. 116–121, 2014.

    Article  Google Scholar 

  71. Raviv, D., Zhao, W., McKnelly, C., Papadopoulou, A., Kadambi, A., et al., “Active Printed Materials for Complex Self-Evolving Deformations,” Scientific Reports, Vol. 4, Article No. 7422, 2014.

    Google Scholar 

  72. Ryu, J., D’Amato, M., Cui, X., Long, K. N., Jerry Qi, H., et al., “Photo-Origami-Bending and Folding Polymers with Light,” Applied Physics Letters, Vol. 100, No. 16, Paper No. 161908, 2012.

    Google Scholar 

  73. Malone, E. and Lipson, H., “Freeform Fabrication of Ionomeric Polymer-Metal Composite Actuators,” Rapid Prototyping Journal, Vol. 12, No. 5, pp. 244–253, 2006.

    Article  Google Scholar 

  74. Bakarich, S. E., Gorkin, R., and Spinks, G. M., “4D Printing with Mechanically Robust, Thermally Actuating Hydrogels,” Macromolecular Rapid Communications, Vol. 36, No. 12, pp. 1211–1217, 2015.

    Article  Google Scholar 

  75. Deng, D., Jain, A., Yodvanich, N., Araujo, A., and Chen, Y., “Three-Dimensional Circuit Fabrication Using Four-Dimensional Printing and Direct Ink Writing,” Proc. of the International Symposium on Flexible, pp. 286–291, 2016.

    Google Scholar 

  76. Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D., et al., “3D Printing of Shape Memory Polymers for Flexible Electronic Devices,” Advanced Materials, Vol. 28, No. 22, pp. 4449–4454, 2016.

    Article  Google Scholar 

  77. Khoo, Z. X., Teoh, J. E. M., Liu, Y., Chua, C. K., Yang, S., et al., “3D Printing of Smart Materials: A Review on Recent Progresses in 4D Printing,” Virtual and Physical Prototyping, Vol. 10, No. 3, pp. 103–122, 2015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Hwan Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Kim, HC., Choi, JW. et al. A review on 3D printed smart devices for 4D printing. Int. J. of Precis. Eng. and Manuf.-Green Tech. 4, 373–383 (2017). https://doi.org/10.1007/s40684-017-0042-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-017-0042-x

Keywords

Navigation