Skip to main content
Log in

Leaves of neotropical savanna tree species are more heat-tolerant than leaves of semi-deciduous forest species

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

Increases of air temperature due to global warming suggest that plants could be exposed to temperatures above their optimum range for performing specific physiological functions in the future. Declines in carbon exchange rates would lead to significant decreases in species performance, particularly in those lacking traits associated to heat tolerance. Savannas and semi-deciduous forests are ecosystems with high biological diversity, scattered throughout the Neotropical landscape, and very dynamic areas controlled by species traits. Significant increases in air temperatures can affect such areas if plant species of these forests lack heat tolerance. We performed heat tolerance assays to obtain T50 values of the photosystem II (PSII) of 30 Neotropical tree species from a savanna (15 species) and a semi-deciduous forest (15 species). Our goal was to test whether the typical savanna species are more heat-tolerant than semi-deciduous forest species. We also assessed if T50 was correlated with leaf morphological traits such as specific leaf area and leaf thickness. We found savanna tree leaves with lower specific leaf area, higher thickness, and higher T50 values than semi-deciduous forest plants (49.36 °C vs. 47.65 °C, respectively). Specific leaf area was negatively correlated to T50 values. Our findings suggest that semi-deciduous forest species would be more affected by temperature increases than savanna species. Whereas species traits play an important role in the dynamics of forest–savanna areas, savanna species would be favored under warmer temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be provided upon request to the corresponding author.

Code availability

Not applicable.

References

  • Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11(7):36–42

    Google Scholar 

  • Abreu RCR, Hoffmann WA, V HL, Pilon NA, Rossatto DR, Durigan G (2017) The biodiversity cost of carbon sequestration in tropical savanna. Sci Adv 3:E1701284

    Article  PubMed  PubMed Central  Google Scholar 

  • Araújo I, Marimon BS, Scalon MC et al (2021) Trees at the Amazonia-Cerrado transition are approaching high temperature thresholds. Environ Res Lett 16(3):034047

    Article  Google Scholar 

  • Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Bond WJ (2008) What limits trees in C-4 grasslands and savannas? Annu Rev Ecol Evol Syst 39:641–659

    Article  Google Scholar 

  • Bond WJ, Parr CL (2010) Beyond the forest edge: ecology, diversity and conservation of the grassy biomes. Biol Cons 143:2395–2404

    Article  Google Scholar 

  • Bottero A, D’Amato AW, Palik BJ, Bradford JB et al (2017) Density-dependent vulnerability of forest ecosystems to drought. J Appl Ecol 54(6):1605–1614

    Article  Google Scholar 

  • Coutinho LM (1990) Fire in the ecology of the brazilian cerrado. Fire in the tropical biota – ecosystem processes and global challenges (Ed.J.G. Goldammer). Springer, Berlin 8:82–105

    Google Scholar 

  • Curtis EM, Knight C, Petrou K, Leigh A (2014) A comparative analysis of photosynthetic recovery from thermal stress: a desert plant case study. Oecologia 175(4):1051–1061

    Article  PubMed  Google Scholar 

  • Durigan G, Ratter JA (2016) The need for a consistent fire policy for Cerrado conservation. J Appl Ecol 53(1):11–15

    Article  Google Scholar 

  • Durigan G, Bacic MC, Franco GADC, de Siqueira MF (1999) Inventário florístico do cerrado na Estação Ecológica de Assis, SP. Hoehnea 26:149–172

    Google Scholar 

  • Durigan G, Baitello JB, Franco GADC, Siqueira MF (2004) Plantas do Cerrado: imagens de uma paisagem ameaçada. Páginas & Letras Editora e Gráfica Ltda

  • Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araújo MB et al (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17(7):2330–2341

    Article  Google Scholar 

  • Furley PA (1992) Edaphic changes a the forest-savanna boundary with particular reference to the neotropics. In: Proctor J, Ratter JA (eds). Nature and dynamics of forest-savanna boundaries. Chapman & Hall, London, pp 91–117

  • Geange S, Arnold PA et al (2021) The thermal tolerance of photosynthetic tissues: a global systematic review and agenda for future research. New Phytol 229(5):2497–2513

    Article  PubMed  Google Scholar 

  • Godoy O, De Lemos-Filho JP, Valladares F (2011) Invasive species can handle higher leaf temperature under water stress than Mediterranean natives. Environ Exp Bot 71(2):207–214

    Article  Google Scholar 

  • Goldstein G, Meinzer FC, Bucci SJ, Scholz FG, Franco AC, Hoffmann WA (2008) Water economy of Neotropical savanna trees: six paradigms revisited. Tree Physiol 28(3):395–404

    Article  PubMed  Google Scholar 

  • Good SP, Caylor KK (2011) Climatological determinants of woody cover in Africa. Proc Natl Acad Sci 108(12):4902–4907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertel MF, Araújo HH, Stolf-Moreira R, Pereira JD, Pimenta JA, Bianchini E, Oliveira HC (2021) Different leaf traits provide light-acclimation responses in two neotropical woody species. Theor Exp Plant Physiol 33(4):313–327

    Article  CAS  Google Scholar 

  • Hoffmann WA, Orthen B, Franco AC (2004) Constraints to seedling success of savanna and forest trees across the savanna-forest boundary. Oecologia 140:252–260

    Article  PubMed  Google Scholar 

  • Hoffmann WA, Franco AC, Moreira MZ, Haridasan M (2005) Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees. Funct Ecol 19:932–940

    Article  Google Scholar 

  • Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR et al (2012) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15:759–768

    Article  PubMed  Google Scholar 

  • Hofmann GS, Cardoso MF, Alves RJV et al (2021) The Brazilian Cerrado is becoming hotter and drier. Glob Change Biol 27(17):4060–4073

    Article  Google Scholar 

  • IPCC (2014) Summary for policymakers. In: Field CB, Barros VR, Dokken DJ (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part: global and sectoral aspects. Contribution of working group ii to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 1–32

  • IPCC (2019) Chapter 1: framing and context. In: Idris IE, Fischlin A, Gao X (eds) Global warming of 1.5 °C. Contribution of working group i, ii and iii to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press: Cambridge, pp 51–91

  • IPCC (2021) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press

  • Juhász CEP, Cursi PR, Cooper M et al (2006) Soil water dynamics in a toposequence under savanna woodland (cerradão) in Assis, SP, Brazil. Rev Bras Ciênc Solo 30:401–412

    Article  Google Scholar 

  • Knight CA, Ackerly DD (2003) Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: congeneric species from desert and coastal environments. New Phytol 160:337–347

    Article  CAS  PubMed  Google Scholar 

  • Lohbeck M, Lebrija-Trejos E, Martínez-Ramos M et al (2015) Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession. PLoS ONE 10(4):e0123741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markesteijn L, Poorter L, Bongers F, Paz H, Sack L (2011) Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance. New Phytol 191(2):480–495

    Article  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668

    Article  CAS  PubMed  Google Scholar 

  • Nelson JA, Bugbee B (2015) Analysis of environmental effects on leaf temperature under sunlight, high pressure sodium and light emitting diodes. PloS ONE 10(10):e0138930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nimer E (1989). Clima. In: IBGE. Geografia do Brasil – Região Centro-Oeste. Rio de Janeiro, IBGE, pp 23–34

  • O’sullivan OS, Heskel MA, Reich PB, Tjoelker MG, Weerasinghe LK, Penillard A, et al (2017) Thermal limits of leaf metabolism across biomes. Glob Change Biol 23(1):209–223

    Article  Google Scholar 

  • Oliveira Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32:793–810

    Article  Google Scholar 

  • Perez TM, Feeley KJ (2020) Photosynthetic heat tolerances and extreme leaf temperatures. Funct Ecol 34(11):2236–2245

    Article  Google Scholar 

  • Perez TM, Feeley KJ (2021) Weak phylogenetic and climatic signals in plant heat tolerance. J Biogeogr 48(1):91–100

    Article  Google Scholar 

  • Perez TM, Socha A, Tserej O, Feeley KJ (2021) Photosystem II heat tolerances characterize thermal generalists and the upper limit of carbon assimilation. Plant Cell Environ 44(7):2321–2330

    Article  CAS  PubMed  Google Scholar 

  • Phelps LN, Chevalier M, Shanahan TM, Aleman JC et al (2020) Asymmetric response of forest and grassy biomes to climate variability across the African humid period: influenced by anthropogenic disturbance? Ecography 43(8):1118–1142

    Article  Google Scholar 

  • Prado DE (2000) Seasonally dry forests of tropical South America: from forgotten ecosystems to a new phytogeographic unit. Edinb J Bot 57(3):437–461

    Article  Google Scholar 

  • Prior LD, Bowman DMJS, Eamus D (2004) Seasonal differences in leaf attributes in Australian tropical tree species: family and habitat comparisons. Funct Ecol 18:707–718

    Article  Google Scholar 

  • Ramos VS, Durigan G, Franco GADC, Siqueria MF de, Rodrigues RR (2015) Árvores da Floresta Estacional Semidecidual: Guia de Identificação de Espécies. 2ª edição. São Paulo: EDUSP

  • Ribeiro JF, Walter BMT (2008) As principais fitofisionomias do Bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JF (eds) Ecologia e flora. Brasília, EMBRAPA, pp 152–212

    Google Scholar 

  • Rossatto DR (2013) Seasonal patterns of leaf production in co-occurring trees with contrasting leaf phenology: time and quantitative divergences. Plant Species Biol 28(2):138–145

    Article  Google Scholar 

  • Rossatto DR, Hoffmann WA, Franco AC (2009) Differences in growth patterns between co-occurring forest and savanna trees affect the forest–savanna boundary. Funct Ecol 23(4):689–698

    Article  Google Scholar 

  • Rossatto DR, Hoffmann WA, Ramos Silva LC, Haridasan M, Sternberg LSL, Franco AC (2013) Seasonal variation in leaf traits between congeneric savanna and forest trees in Central Brazil: implications for forest expansion into savanna. Trees 27:1139–1150

    Article  Google Scholar 

  • Ruggiero PGC, Batalha MA, Pivello VR, Meirelles ST (2002) Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol 160:1–16

    Article  Google Scholar 

  • Santiago LS, Mulkey SS (2003) A test of gas exchange measurements on excised canopy branches of ten tropical tree species. Photosynthetica 41(3):343–347

    Article  CAS  Google Scholar 

  • Santos DL, Sentelhas PC (2014) Climate change scenarios and their impact on water balance and sugarcane yield in Southern Brazil. Sugar Tech 16(4):356–365

    Article  Google Scholar 

  • Sastry A, Barua D (2017) Leaf thermotolerance in tropical trees from a seasonally dry climate varies along the slow-fast resource acquisition spectrum. Sci Rep 7:11246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sastry A, Guha A, Barua D (2018) Leaf thermotolerance in dry tropical forest tree species: relationships with leaf traits and effects of drought. AoB Plants 10: plx070.

  • Schymanski SJ, Or D, Zwieniecki M (2013). Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations. PloS one 8(1): e54231.

  • Shipley B, Lechowicz MJ, Wright I, Reich PB (2006) Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology 87(3):535–541

    Article  PubMed  Google Scholar 

  • Slot M, Cala D, Aranda J, Virgo A, Michaletz ST, Winter K (2021) Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. Plant Cell Environ 44(7):2414–2427

    Article  CAS  PubMed  Google Scholar 

  • Smillie RM, Hetherington SE (1990) Screening for stress tolerance by chlorophyll fluorescence. In: Hasimoto Y, Kramer PJ, Nonami H, Strain BR (eds) Measurement techniques in plant science. Academic Press, Cambridge, pp 229–261

    Chapter  Google Scholar 

  • Souza CK, Marques Júnior J, Martins Filho MV, Pereira GT (2003) Influência do relevo e erosão na variabilidade espacial de um Latossolo em Jaboticabal (SP). Rev Bras Ciênc Solo 27:1067–1074

    Article  Google Scholar 

  • Stahl U, Kattge J, Reu B, Voigt W, Ogle K, Dickie J, Wirth C (2013) Whole-plant trait spectra of North American woody plant species reflect fundamental ecological strategies. Ecosphere 4(10):1–28

    Article  Google Scholar 

  • Tiwari R, Gloor E, da Cruz WJA et al (2021) Photosynthetic quantum efficiency in south-eastern Amazonian trees may be already affected by climate change. Plant Cell Environ 44(7):2428–2439

    Article  CAS  PubMed  Google Scholar 

  • Veloso HP, Rangel Filho ALR, Lima JCA (1991). Classificação da vegetação brasileira, adaptada a um sistema universal. Rio de Janeiro: CDDI Departamento de Editoração 123.

  • Vitória AP, Alves LF, Santiago LS (2019) Atlantic forest and leaf traits: an overview. Trees 33(6):1535–1547

    Article  Google Scholar 

  • Vogel S (2009) Leaves in the lowest and highest winds: temperature, force and shape. New Phytol 183(1):13–26

    Article  PubMed  Google Scholar 

  • Vogt DJ, Vogt KA, Gmur SJ et al (2016) Vulnerability of tropical forest ecosystems and forest dependent communities to droughts. Environ Res 144:27–38

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Warton DI, Duursma RA, Falster DS, Taskinen S (2012) smatr 3: an R package for estimation and inference about allometric lines. Methods Ecol Evol 3(2):257–259

    Article  Google Scholar 

  • Zelazowski P, Malhi Y, Huntingford C, Sitch S, Fisher JB (2011) Changes in the potential distribution of humid tropical forests on a warmer planet. Philos Trans R Soc A 369(1934):137–160

    Article  Google Scholar 

  • Zhang J, Poorter L, Hao G, Cao K (2012) Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span. Ann Bot 110(5):1027–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Bloomfield KJ, Hocart CH, Egerton JJ, O’Sullivan OS, Penillard A, Weerasinghe LK, Atkin OK (2018) Plasticity of photosynthetic heat tolerance in plants adapted to thermally contrasting biomes. Plant Cell Environ 41(6):1251–1262

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Coordenação de Aperfeiçoamento do Ensino Superior – CAPES – Finance code 001 and the Brazilian National Council of Research (CNPq) – grant 302897/2018–6.

Author information

Authors and Affiliations

Authors

Contributions

Conceived the idea and designed the experiment: DRR. Performed the experiment: BHPS. Analyzed data: BHPS. Wrote the manuscript: BHPS and DRR.

Corresponding author

Correspondence to Davi Rodrigo Rossatto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 646 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, B.H.P., Rossatto, D.R. Leaves of neotropical savanna tree species are more heat-tolerant than leaves of semi-deciduous forest species. Theor. Exp. Plant Physiol. 34, 227–237 (2022). https://doi.org/10.1007/s40626-022-00244-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-022-00244-2

Keywords

Navigation