Skip to main content

Advertisement

Log in

Climate Change Scenarios and Their Impact on Water Balance and Sugarcane Yield in Southern Brazil

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Sugarcane is one of the main extensive crops in Southern Brazil, covering around 8 million ha. The crop is mainly produced under rainfed conditions, which makes the sugarcane sector very susceptible to climate variability and change. The study of the agro-environmental vulnerability of the sugarcane crop is an essential aspect to determine the yield potential, the climatic risks and to conduct the crop planning at medium and long terms. Based on the economic and social importance of sugarcane crop for Southern Brazil and the expected future scenarios of climate change for this region, reported by the IPCC and the First Brazilian Report on Climate Change, the present study had as objectives to assess the impacts of different climate changes scenarios on the water balance and on the potential and actual yields for the main sugarcane production regions of the state of São Paulo, Brazil. For that, twelve climate change scenarios, with increasing temperatures and CO2 concentrations in the atmosphere, and varying changes in rainfall were generated for the years of 2030, 2060 and 2090. The results indicated that, even with the huge impact of climate change on the water balance of all locations, the potential and actual yields may increase substantially as a function of the combination of higher air temperatures, higher CO2 concentration and also better management practices in the future scenarios. By 2090, even with a higher water deficit, the sugarcane actual yield may increase by 82, 71, 51 and 59 %, respectively for Araçatuba, Assis, Jaboticabal and Piracicaba, which indicates an improvement on the water use efficiency. Based on that, sugarcane stands up as a very important crop to face climate change in Brazil and around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alvares, C.A., J.L. Stape, P.C. Sentelhas, and J.L.M. Gonçalves. 2013. Modeling monthly mean air temperature for Brazil. Theoretical and Applied Climatology 113: 407–427.

    Article  Google Scholar 

  • Camargo, A.P., F.R. Marin, P.C. Sentelhas, and A.G. Picini. 1999. Ajuste da equação de Thornthwaite para estimar a evapotranspiração potencial em climas áridos e superúmidos, com base na amplitude térmica diária. Revista Brasileira de Agrometeorologia 7(251–257).

    Google Scholar 

  • CONAB. (2012) Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira: cana-de-açúcar, segundo levantamento. Brasilia, 2012. Available at: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/12_08_09_15_07_05_boletim_cana_portugues_-_agosto_2012_2o_lev.pdf (Accessed September 6, 2012).

  • Cardozo, N.P., and P.C. Sentelhas. 2013. Climatic effects on sugarcane ripening under the influence of cultivars and crop age. Scientia Agricola 70: 449–456.

    Google Scholar 

  • Cavalcanti, I.F.A., N.J. Ferreira, M.G.A.J. Silva, M.A.F.S. Dias. 2009. Tempo e clima no Brasil. 463. São Paulo: Oficina de Textos.

  • Challinor, A.J., and T.R. Wheeler. 2008. Crop yield reduction in the tropics under climate change: processes and uncertainties. Agricultural and Forest Meteorology 148: 343–356.

    Article  Google Scholar 

  • Doorenbos, J., and A.H. Kassam. 1979. Yield response to water. 139. Rome: FAO (Irrigation and Drainage paper, 33).

  • Ferreira, E.A., I. Aspiazú, G. Concenço, A.F. Silva, A.A. Silva, L.L. Galon, and D.V. Silva. 2011. Evaluation and grouping of sugarcane in agreement with their physiology characteristics types. Revista TrópicaCiências Agrárias e Biológicas 5: 30-38.

    Google Scholar 

  • Fischer, G., M. Shah, and H. van Velthuizen. 2002. Climate change and agricultural vulnerability. 152. Johannesburg: IIASA.

  • Gouvêa, J.R.F., P.C. Sentelhas, S.T. Gazzola, and M.C. Santos. 2009. Climate change and technological advances: impacts on sugarcane productivity in tropical Southern Brazil. Scientia Agricola 66: 593–605.

    Article  Google Scholar 

  • Ghini, R., E. Hamada, and W. Bettiol. 2008. Climate change and plant diseases. Scientia Agricola 68: 98–107.

    Article  Google Scholar 

  • Hoogenboom, G. 2000. Contribution of agrometeorology to the simulation of crop production and its applications. Agricultural and Forest Meteorology 103: 137–157.

    Article  Google Scholar 

  • Horikoshi, A.S., and G. Fisch. 2007. Balanço hídrico atual e simulações para cenários climáticos futuros no município de Taubaté, SP, Brasil. Revista Ambiente e Água 2: 33–46.

    Article  Google Scholar 

  • Ibarra-Montoya, J.L., R. Román, K. Gutiérrez, J. Gaxiola, V. Arias, and M. Bautista. 2011. Cambio em la cobertura y uso del suelo em el norte de Jalisco, México: Um análisis del futuro, em um contexto de cambio climático. Revista Ambiente e Água 6: 111–128.

    Article  Google Scholar 

  • Inman-Bamber, N.G., and D.M. Smith. 2005. Water relations in sugarcane and response to water deficit. Field Crops Research 92: 185–202.

    Article  Google Scholar 

  • IPCC. 2007. Intergovernmental Panel on Climate Change. Climate Change: The Physical Science Basis. Summary for Policymakers. Working Group I. http://ipccwg1.ucar.edu/wg1/Report/AR4WG1_Pub_SPM-v2.pdf (Accessed April 16, 2012).

  • Knox, J.W., J.A. Rodríguez Díaz, D.J. Nixon, and M. Mkhwanazi. 2010. A preliminary assessment of climate change impacts on sugarcane in Swaziland. Agricultural Systems 103: 63–72.

    Article  Google Scholar 

  • Knox, J.W., T. Hess, A. Daccache, and T. Wheeler. 2012. Climate change impacts on crop productivity in Africa and South Asia. Environmental Research Letters 7: 1–8.

    Article  Google Scholar 

  • Li, Z., W.Z. Liu, X.C. Zhang, and F.L. Zheng. 2011. Assessing the site-specific impacts of climate change on hydrology, soil erosion and crop yields in the Loess Plateau of China. Climate Change 105: 223–242.

    Article  Google Scholar 

  • Liberato, A.M.L., and J.I.B. Brito. 2010. Influência de mudanças climáticas no balanço hídrico da Amazônia Ocidental. Revista Brasileira de Geografia Física 3: 170–180.

    Google Scholar 

  • Marin, F.R., M.L. Lopes-Assad, E.D. Assad, C.E. Vian, and M.C. Santos. 2008. Sugarcane crop efficiency in two growing seasons in São Paulo State, Brazil. Pesquisa Agropecuária Brasileira 43: 1449–1455.

    Article  Google Scholar 

  • Marin, F.R., and D.S.P. Nassif. 2013. Mudanças climáticas e a cana-de-açúcar no Brasil: fisiologia, conjuntura e cenário futuro. Revista Brasileira de Engenharia Agrícola e Ambiental 17: 232–239.

    Article  Google Scholar 

  • Marin, F.R., J.W. Jones, A. Singels, F. Royce, E.D. Assad, G.Q. Pellegrino, and F. Justino. 2013. Climate change impacts on sugarcane stainable yield in southern Brazil. Climate Change 117: 227–239.

    Article  Google Scholar 

  • Marks, D., G.A. King, and J. Dolph. 1993. Implications of climate change for water balance of the Columbia River basin, USA. Climate Research 2: 203–213.

    Article  Google Scholar 

  • Medeiros, Y.D.P. 2003. Análise dos impactos das mudanças climáticas em região semi-árida. Revista Brasileira de Recursos Hídricos 8: 127–136.

    Google Scholar 

  • Monteiro, L.A. 2012. Modelagem agrometeorológica como base para a definição de ambientes de produção para a cultura da cana-de-açúcar no Estado de São Paulo. 118. Piracicaba: Programa de Pós-Graduação em Física do Ambiente Agrícola - Universidade de São Paulo, Piracicaba.

  • Monteiro, L.A., and P.C. Sentelhas. 2013. Potential and actual sugarcane yields in Southern Brazil as a function of climate conditions and crop management. Sugar Tech. doi:10.1007/s12355-013-0275-0.

    Google Scholar 

  • Oliveira, L.J.C. 2007. Mudanças climáticas e seus impactos nas produtividades das culturas do feijão e milho no Estado de Minas Gerais. 67. Viçosa: Programa de Pós-Graduação em Meteorologia Agrícola—Universidade Federal de Viçosa.

  • Pereira, A.R., L.R. Angelocci, and P.C. Sentelhas. 2002. Agrometeorologia: Fundamentos e aplicações práticas. 478. Guaíba: Agropecuária.

  • Pérez, S., and E. Sierra. 2012. Changes in rainfall patterns in the eastern area of La Pampa province, Argentina. Revista Ambiente e Água 7: 24–35.

    Article  Google Scholar 

  • Prado, H. 2013. Pedologia Fácil: aplicações em solos tropicais. 284. . Piracicaba: Fundag.

    Google Scholar 

  • Rolim, G.S., P.C. Sentelhas, and V. Barbieri. 1998. Planilhas no ambiente Excel para os cálculos de balanços hídricos: normal, seqüencial, de cultura e de produtividade real e potencial. Revista Brasileira de Agrometeorologia 6: 133–137.

    Google Scholar 

  • Santos, M.C., P.C. Sentelhas, and F.R. Marin. 2006. Calibração do modelo agrometeorológico da FAO para a estimativa da produtividade potencial e real da cana-de-açúcar (Saccharum spp). In: SIICUSP. São Paulo: Universidade de São Paulo.

  • Souza, A.P. 2007. A cana-de-açúcar e as mudanças climáticas: efeito de uma atmosfera enriquecida de CO2 sobre o crescimento, desenvolvimento e metabolismo de carboidratos de Saccharum spp. 85. Campinas: Programa de Pós-Graduação em Biologia Celular e Estrutural - Universidade Estadual de Campinas.

  • Teruel, D.A., V. Barbieri, and L.A. Ferrari Júnior. 1997. Sugarcane leaf area index modeling under different soil water conditions. Scientia Agricola 54: 39–44.

    Article  Google Scholar 

  • Thornthwaite, C.W., and J.R. Mather. 1955. The water balance .104. New Jersey: Drexel Institute of Tecnology (Publications in Climatology).

    Google Scholar 

  • Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. Geographical Review 38: 55–94.

    Article  Google Scholar 

  • Tubiello, F.N., M. Donatelli, C. Rosenzweig, and C.O. Stöckle. 2000. Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. European Journal of Agronomy 13: 179–189.

    Article  Google Scholar 

  • Zullo, J., H.S. Pinto, E.D. Assad, and S.R.M. Evangelista. 2008. Potential economic impacts of global warming on two Brazilian commodities, according to IPCC prognostics. Terrae 3: 28–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo C. Sentelhas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, D.L., Sentelhas, P.C. Climate Change Scenarios and Their Impact on Water Balance and Sugarcane Yield in Southern Brazil. Sugar Tech 16, 356–365 (2014). https://doi.org/10.1007/s12355-013-0293-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-013-0293-y

Keywords

Navigation