Skip to main content
Log in

Organ and tissue-dependent effect of resveratrol and exercise on antioxidant defenses of old mice

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Oxidative stress has been considered one of the causes of aging. For this reason, treatments based on antioxidants or those capable of increasing endogenous antioxidant activity have been taken into consideration to delay aging or age-related disease progression.

Aim

In this paper, we determine if resveratrol and exercise have similar effect on the antioxidant capacity of different organs in old mice.

Methods

Resveratrol (6 months) and/or exercise (1.5 months) was administered to old mice. Markers of oxidative stress (lipid peroxidation and glutathione) and activities and levels of antioxidant enzymes (SOD, catalase, glutathione peroxidase, glutathione reductase and transferase and thioredoxin reductases, NADH cytochrome B5-reductase and NAD(P)H-quinone acceptor oxidoreductase) were determined by spectrophotometry and Western blotting in different organs: liver, kidney, skeletal muscle, heart and brain.

Results

Both interventions improved antioxidant activity in the major organs of the mice. This induction was accompanied by a decrease in the level of lipid peroxidation in the liver, heart and muscle of mice. Both resveratrol and exercise modulated several antioxidant activities and protein levels. However, the effect of resveratrol, exercise or their combination was organ dependent, indicating that different organs respond in different ways to the same stimulus.

Conclusions

Our data suggest that physical activity and resveratrol may be of great importance for the prevention of age-related diseases, but that their organ-dependent effect must be taken into consideration to design a better intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    Article  CAS  PubMed  Google Scholar 

  2. Marzetti E, Calvani R, Cesari M et al (2013) Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. Int J Biochem Cell Biol 45(10):2288–2301. doi:10.1016/j.biocel.2013.06.024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Dai DF, Chiao YA, Marcinek DJ (2014) Mitochondrial oxidative stress in aging and healthspan. Longev Healthspan 3:6. doi:10.1186/2046-2395-3-6

    Article  PubMed Central  PubMed  Google Scholar 

  4. Wolter F, Ulrich S, Stein J (2004) Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in colorectal cancer: key role of polyamines? J Nutr 134(12):3219–3222

    CAS  PubMed  Google Scholar 

  5. Donnelly LE, Newton R, Kennedy GE (2004) Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am J Physiol Lung Cell Mol Physiol 287(4):L774–L783. doi:10.1152/ajplung.00110.2004

    Article  CAS  PubMed  Google Scholar 

  6. Cai YJ, Fang JG, Ma LP (2003) Inhibition of free radical-induced peroxidation of rat liver microsomes by resveratrol and its analogues. Biochim Biophys Acta 1637(1):31–38

    Article  CAS  PubMed  Google Scholar 

  7. Kulkarni SS, Canto C (2014) The molecular targets of resveratrol. Biochim Biophys Acta. doi:10.1016/j.bbadis.2014.10.005

    PubMed Central  Google Scholar 

  8. Burkewitz K, Zhang Y, Mair WB (2014) AMPK at the nexus of energetics and aging. Cell Metab 20(1):10–25. doi:10.1016/j.cmet.2014.03.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Fox JT, Sakamuru S, Huang R (2012) High-throughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death. Proc Natl Acad Sci USA 109(14):5423–5428. doi:10.1073/pnas.1114278109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Tyagi A, Gu M, Takahata T (2011) Resveratrol selectively induces DNA Damage, independent of Smad4 expression, in its efficacy against human head and neck squamous cell carcinoma. Clin Cancer Res 17(16):5402–5411. doi:10.1158/1078-0432.CCR-11-1072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lopez M, Martinez F, Del Valle C (2003) Study of phenolic compounds as natural antioxidants by a fluorescence method. Talanta 60(2–3):609–616. doi:10.1016/S0039-9140(03)00191-7

    Article  CAS  PubMed  Google Scholar 

  12. Tung BT, Rodriguez-Bies E, Ballesteros-Simarro M (2014) Modulation of endogenous antioxidant activity by resveratrol and exercise in mouse liver is age dependent. J Gerontol A Biol Sci Med Sci 69(4):398–409. doi:10.1093/gerona/glt102

    Article  CAS  PubMed  Google Scholar 

  13. Mercken EM, Carboneau BA, Krzysik-Walker SM (2012) Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev 11(3):390–398. doi:10.1016/j.arr.2011.11.005

    Article  PubMed Central  PubMed  Google Scholar 

  14. Pallauf K, Giller K, Huebbe P (2013) Nutrition and healthy ageing: calorie restriction or polyphenol-rich “MediterrAsian” diet? Oxid Med Cell Longev 2013:707421. doi:10.1155/2013/707421

    Article  PubMed Central  PubMed  Google Scholar 

  15. Polidori MC, Mecocci P, Cherubini A (2000) Physical activity and oxidative stress during aging. Int J Sports Med 21(3):154–157. doi:10.1055/s-2000-8881

    Article  CAS  PubMed  Google Scholar 

  16. Yamamoto T, Ohkuwa T, Itoh H (2003) Relation between voluntary physical activity and oxidant/antioxidant status in rats. Comp Biochem Physiol C Toxicol Pharmacol 135(2):163–168

    Article  CAS  PubMed  Google Scholar 

  17. Del Pozo-Cruz J, Rodriguez-Bies E, Ballesteros-Simarro M (2014) Physical activity affects plasma coenzyme Q10 levels differently in young and old humans. Biogerontology 15(2):199–211. doi:10.1007/s10522-013-9491-y

    Article  PubMed  Google Scholar 

  18. Del Pozo-Cruz J, Rodriguez-Bies E, Navas-Enamorado I (2014) Relationship between functional capacity and body mass index with plasma coenzyme Q10 and oxidative damage in community-dwelling elderly-people. Exp Gerontol 52:46–54. doi:10.1016/j.exger.2014.01.026

    Article  PubMed  Google Scholar 

  19. de Haan JB, Cristiano F, Iannello R (1996) Elevation in the ratio of Cu/Zn-superoxide dismutase to glutathione peroxidase activity induces features of cellular senescence and this effect is mediated by hydrogen peroxide. Hum Mol Genet 5(2):283–292

    Article  PubMed  Google Scholar 

  20. Powers SK, Criswell D, Lawler J (1994) Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Physiol 266(2 Pt 2):R375–R380

    CAS  PubMed  Google Scholar 

  21. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    Article  CAS  PubMed  Google Scholar 

  22. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  23. Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555

    Article  CAS  PubMed  Google Scholar 

  24. Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71(4):952–958

    Article  CAS  PubMed  Google Scholar 

  25. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  CAS  PubMed  Google Scholar 

  26. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    CAS  PubMed  Google Scholar 

  27. Strittmatter P, Velick SF (1957) The purification and properties of microsomal cytochrome reductase. J Biol Chem 228(2):785–799

    CAS  PubMed  Google Scholar 

  28. Benson AM, Hunkeler MJ, Talalay P (1980) Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci USA 77(9):5216–5220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hill KE, McCollum GW, Burk RF (1997) Determination of thioredoxin reductase activity in rat liver supernatant. Anal Biochem 253(1):123–125. doi:10.1006/abio.1997.2373

    Article  CAS  PubMed  Google Scholar 

  30. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  31. Gerard-Monnier D, Erdelmeier I, Regnard K (1998) Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxicol 11(10):1176–1183. doi:10.1021/tx9701790

    Article  CAS  PubMed  Google Scholar 

  32. Rodriguez-Bies E, Navas P, Lopez-Lluch G (2015) Age-dependent effect of every-other-day feeding and aerobic exercise in ubiquinone levels and related antioxidant activities in mice muscle. J Gerontol A Biol Sci Med Sci 70(1):33–43. doi:10.1093/gerona/glu002

    Article  PubMed  Google Scholar 

  33. Rodriguez-Bies E, Santa-Cruz Calvo S, Fontan-Lozano A (2010) Muscle physiology changes induced by every other day feeding and endurance exercise in mice: effects on physical performance. PLoS One 5(11):e13900. doi:10.1371/journal.pone.0013900

    Article  PubMed Central  PubMed  Google Scholar 

  34. Harman D (1960) The free radical theory of aging: the effect of age on serum mercaptan levels. J Gerontol 15:38–40

    Article  CAS  PubMed  Google Scholar 

  35. Lopez-Lluch G, Rios M, Lane MA (2005) Mouse liver plasma membrane redox system activity is altered by aging and modulated by calorie restriction. Age (Dordr) 27(2):153–160. doi:10.1007/s11357-005-2726-3

    Article  PubMed Central  CAS  Google Scholar 

  36. Nohl H (1993) Involvement of free radicals in ageing: a consequence or cause of senescence. Br Med Bull 49(3):653–667

    CAS  PubMed  Google Scholar 

  37. Lopez-Dominguez JA, Khraiwesh H, Gonzalez-Reyes JA (2013) Dietary fat modifies mitochondrial and plasma membrane apoptotic signaling in skeletal muscle of calorie-restricted mice. Age (Dordr) 35(6):2027–2044. doi:10.1007/s11357-012-9492-9

    Article  CAS  Google Scholar 

  38. Lopez-Dominguez JA, Khraiwesh H, Gonzalez-Reyes JA (2014) Dietary fat and aging modulate apoptotic signaling in liver of calorie-restricted mice. J Gerontol A Biol Sci Med Sci. doi:10.1093/gerona/glu045

    Google Scholar 

  39. Lopez-Dominguez JA, Ramsey JJ, Tran D (2014) The influence of dietary fat source on life span in calorie restricted mice. J Gerontol A Biol Sci Med Sci. doi:10.1093/gerona/glu177

    Google Scholar 

  40. Wong YT, Gruber J, Jenner AM (2009) Elevation of oxidative-damage biomarkers during aging in F2 hybrid mice: protection by chronic oral intake of resveratrol. Free Radic Biol Med 46(6):799–809. doi:10.1016/j.freeradbiomed.2008.12.016

    Article  CAS  PubMed  Google Scholar 

  41. Thirunavukkarasu V, Balakrishnan SD, Ravichandran MK (2003) Influence of 6-week exercise training on erythrocyte and liver antioxidant defense in hyperinsulinemic rats. Comp Biochem Physiol C Toxicol Pharmacol 135(1):31–37

    Article  CAS  PubMed  Google Scholar 

  42. de Haan JB, Cristiano F, Iannello RC (1995) Cu/Zn-superoxide dismutase and glutathione peroxidase during aging. Biochem Mol Biol Int 35(6):1281–1297

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Almudena Velazquez Dorado and Ana Sanchez Cuesta for their technical support. The group was financed by the Andalusian Government as the BIO177 Group through FEDER funds (European Commission). The research was financed by the Spanish Government Grant DEP2012-39985 (Spanish Ministry of Economy and Competitiveness). Tung Bui Thanh received a fellowship from the AECID program (Spanish Ministry of Foreing Affair). ERB, PN and GLL are also members of the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto Carlos III.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights

All animals were maintained according to a protocol approved by the Ethical Committee of the University Pablo de Olavide of resolution 03/09 and following the international rules for animal research. This article does not contain any studies with humans performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bui Thanh Tung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tung, B.T., Rodriguez-Bies, E., Thanh, H.N. et al. Organ and tissue-dependent effect of resveratrol and exercise on antioxidant defenses of old mice. Aging Clin Exp Res 27, 775–783 (2015). https://doi.org/10.1007/s40520-015-0366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-015-0366-8

Keywords

Navigation