Skip to main content
Log in

Mouse liver plasma membrane redox system activity is altered by aging and modulated by calorie restriction

  • Research article
  • Published:
AGE Aims and scope Submit manuscript

Abstract

Caloric restriction (CR) is known as the only non-genetic method proven to slow the rate of aging and extend lifespan in animals. Free radicals production emerges from normal metabolic activity and generates the accumulation of oxidized macromolecules, one of the main characteristics of aging. Due to its central role in cell bioenergetics, a great interest has been paid to CR-induced modifications in mitochondria, where CR has been suggested to decrease reactive oxygen species production. The plasma membrane contains a trans-membrane redox system (PMRS) that provides electrons to recycle lipophilic antioxidants, such as α-tocopherol and coenzyme Q (CoQ), and to modulate cytosolic redox homeostasis. In the present study, we have investigated age differences in the PMRS in mouse liver and their modulation by CR. Aging induced a decrease in the ratio of CoQ10/CoQ9 and α-tocopherol in liver PM from AL-fed mice that was attenuated by CR. CoQ-dependent NAD(P)H dehydrogenases highly increased in CR old mice liver PMs. On the other hand, the CoQ-independent NADH-FCN reductase activity increased in AL-fed animals; whereas, in mice under CR this activity did not change during aging. Our results suggest that liver PMRS activity changes during aging and that CR modulates these changes. By this mechanism CR maintains a higher antioxidant capacity in liver PM of old animals by increasing the activity of CoQ-dependent reductases. Also, the putative role of PMRS in the modulation of redox homeostasis of cytosol is implicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcain FJ, Buron MI, Villalba JM and Navas P (1991) Ascorbate is regenerated by HL-60 cells through the transplasmalemma redox system. Biochim Biophys Acta 1073(2): 380–385

    CAS  PubMed  Google Scholar 

  • Armeni T, Principato G, Quiles JL, Pieri C, Bompadre S and Battino M (2003) Mitochondrial dysfunctions during aging: Vitamin E deficiency or caloric restriction-two different ways of modulating stress. J Bioenerg Biomembranes 35(2): 181–191

    Article  CAS  Google Scholar 

  • Barja G (2002) Endogenous oxidative stress: Relationship to aging, longevity and caloric restriction. Ageing Res Rev 1(3): 397–411

    Article  CAS  PubMed  Google Scholar 

  • Beyer RE (1994) The role of ascorbate in antioxidant protection of biomembranes: Interaction with vitamin E and coenzyme Q. J Bioenerg Biomembranes 26(4): 349–358

    Article  CAS  Google Scholar 

  • Beyer RE, Segura-Aguilar J, Di Bernardo S, Cavazzoni M, Fato R and Fiorentini D et al. (1996) The role of DT-diaphorase in themaintenance of the reduced antioxidant form of coenzyme Qin membrane systems. Proc Natl Acad Sci USA 93(6): 2528–2532

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72: 248–254

    Article  CAS  PubMed  Google Scholar 

  • Burón MI, Rodríguez-Aguilera JC, Alcaín FJ and Navas P (1993) Transplasma membrane redox system in HL-60 cells is modulated during TPA-induced differentiation. Biochem Biophys Res Commun 192(2): 439–445

    Article  PubMed  Google Scholar 

  • Crane FL, Sun IL, Clark MG, Grebing C and Löw H (1985) Transplasma–membrane redox systems in growth and development. Biochim Biophys Acta 811: 233–264

    CAS  PubMed  Google Scholar 

  • Crane FL, Sun IL, Barr R and Low H (1991) Electron and proton transport across the plasma membrane. J Bioenerg Biomembranes 23(5): 773–803

    Article  CAS  Google Scholar 

  • de Cabo R, Furer-Galban S, Anson RM, Gilman C, Gorospe M and Lane MA (2003) An in vitro model of caloric restriction. Exp Gerontol 38(6): 631–639

    Article  PubMed  CAS  Google Scholar 

  • de Cabo R, Cabello R, Rios M, Lopez-Lluch G, Ingram DK and Lane MA et al. (2004) Calorie restriction attenuates age-related alterations in the plasma membrane antioxidant system in rat liver. Exp Gerontol 39(3): 297–304

    Article  PubMed  CAS  Google Scholar 

  • de Grey ADNJ (2001) A proposed mechanism for the lowering of mitochondrial electron leak by caloric restriction. Mitochondrion 1(2): 129–139

    Article  PubMed  Google Scholar 

  • del Castillo-Olivares A, Nunez de Castro I and Medina MA (2000) Dual role of plasma membrane electron transport systems in defense. Crit Rev Biochem Mol Biol 35(3): 197–220

    Article  PubMed  Google Scholar 

  • Fernandez-Ayala DJ, Martin SF, Barroso MP, Gomez-Diaz C, Villalba JM and Rodriguez-Aguilera JC et al. (2000) Coenzyme Q protects cells against serum withdrawal-induced apoptosis by inhibition of ceramide release and caspase-3 activation. Antioxid Redox Signal 2(2): 263–275

    CAS  PubMed  Google Scholar 

  • Finkel T and Holbrook N (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–247

    Article  CAS  PubMed  Google Scholar 

  • Forster MJ, Sohal BH and Sohal RS (2000) Reversible effects of long-term caloric restriction on protein oxidative damage. J Gerontol, A, Biol Sci Med Sci 55(11): B522–B529

    CAS  Google Scholar 

  • Gomez-Diaz C, Rodriguez-Aguilera JC, Barroso MP, Villalba JM, Navarro F and Crane FL et al. (1997a) Antioxidant ascorbate is stabilized by NADH-coenzyme Q10 reductase in the plasma membrane. J Bioenerg Biomembranes 29(3): 251–257

    Article  CAS  Google Scholar 

  • Gomez-Diaz C, Villalba JM, Perez-Vicente R, Crane FL and Navas P (1997b) Ascorbate stabilization is stimulated in rho(0)HL-60 cells by CoQ10 increase at the plasma membrane. Biochem Biophys Res Commun 234(1): 79–81

    Article  CAS  PubMed  Google Scholar 

  • Gredilla R, Lopez-Torres M and Barja G (2002) Effect of time of restriction on the decrease in mitochondrial H2O2 production and oxidative DNA damage in the heart of food-restricted rats. Microsc Res Tech 59(4): 273–277

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: A theory based on free radical and radiation chemistry. J Gerontol 11(3): 298–300

    CAS  PubMed  Google Scholar 

  • Jeon TI, Lim BO, Yu BP, Lim Y, Jeon EJ and Park DK (2001) Effect of dietary restriction on age-related increase of liver susceptibility to peroxidation in rats. Lipids 36(6): 589–593

    CAS  PubMed  Google Scholar 

  • Kagan VE, Serbinova EA and Packer L (1990a) Recycling and antioxidant activity of tocopherol homologs of differing hydrocarbon chain lengths in liver microsomes. Arch Biochem Biophys 282(2): 221–225

    Article  CAS  PubMed  Google Scholar 

  • Kagan VE, Serbinova EA and Packer L (1990b) Generation and recycling of radicals from phenolic antioxidants. Arch Biochem Biophys 280(1): 33–39

    Article  CAS  PubMed  Google Scholar 

  • Kagan VE, Nohl H and Quinn PJ (1996) Coenzyme Q: Its role in scavenging and generation of radicals in membranes. In: Cadenas E and Packer L (eds) Handbook of Antioxidants, pp 157–201. Marcel Decker, New York

    Google Scholar 

  • Larm JA, Vaillant F, Linnane AW and Lawen A (1994) Up-regulation of the plasma membrane oxidoreductase as a prerequisite for the viability of human Namalwa cells. J Biol Chem 296: 30097–30100

    Google Scholar 

  • Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 90(19): 8905–8909

    CAS  PubMed  Google Scholar 

  • Lass A, Sohal BH, Weindruch R, Forster MJ and Sohal RS (1998) Caloric restriction prevents age-associated accrual of oxidative damage to mouse skeletal muscle mitochondria. Free Radic Biol Med 25(9): 1089–1097

    Article  CAS  PubMed  Google Scholar 

  • Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA and Culotta VC et al. (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418(6895): 344–348

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Lluch G, Buron MI, Alcain FJ, Quesada JM and Navas P (1998) Redox regulation of cAMP levels by ascorbate in 1,25-dihydroxy-vitamin D3-induced differentiation of HL-60 cells. Biochem J 331(Pt 1): 21–27

    CAS  PubMed  Google Scholar 

  • Lopez-Torres M, Gredilla R, Sanz A and Barja G (2002) Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Radic Biol Med 32(9): 882–889

    Article  CAS  PubMed  Google Scholar 

  • Martin SF, Gomez-Diaz C, Bello RI, Navas P and Villalba JM (2003) Inhibition of neutral Mg2+-dependent sphingomyelinase by ubiquinol-mediated plasma membrane electron transport. Protoplasma 221(1–2): 109–116

    Article  CAS  PubMed  Google Scholar 

  • Martinus RD, Linnane AW and Nagley P (1993) Growth of rho 0 human Namalwa cells lacking oxidative phosphorylation can be sustained by redox compounds potassium ferricyanide or coenzyme Q10 putatively acting through the plasma membrane oxidase. Biochem Mol Biol Int 31(6): 997–1005

    CAS  PubMed  Google Scholar 

  • Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW and Clayton PE et al. (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289(5484): 1567–1569

    Article  CAS  PubMed  Google Scholar 

  • Merker MP, Olson LE, Bongard RD, Patel MK, Linehan JH and Dawson CA (1998) Ascorbate-mediated transplasma membrane electron transport in pulmonary arterial endothelial cells. Am J Physiol 274(5 Pt 1): L685–L693

    CAS  PubMed  Google Scholar 

  • Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P and Pandolfi PP et al. (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals [see comments]. Nature 402(6759): 309–313

    Article  CAS  PubMed  Google Scholar 

  • Navas P, Sun IL, Morre DJ and Crane FL (1986) Decrease of NADH in HeLa cells in the presence of transferrin or ferricyanide. Biochem Biophys Res Commun 135(1): 110–115

    Article  CAS  PubMed  Google Scholar 

  • Navas P, Nowack DD and Morre DJ (1989) Isolation of purified plasma membranes from cultured cells and hepatomas by two-phase partition and preparative free-flow electrophoresis. Cancer Res 49(8): 2147–2156

    CAS  PubMed  Google Scholar 

  • Pamplona R, Portero-Otin M, Requena J, Gredilla R and Barja G (2002) Oxidative, glycoxidative and lipoxidative damage to rat heart mitochondrial proteins is lower after 4 months of caloric restriction than in age-matched controls. Mech Ageing Dev 123(11): 1437–1446

    Article  CAS  PubMed  Google Scholar 

  • Rafique R, Schapira AH and Coper JM (2004) Mitochondrial respiratory chain dysfunction in ageing; influence of vitamin E deficiency. Free Radic Res 38(2): 157–165

    Article  CAS  PubMed  Google Scholar 

  • Raha S and Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25(10): 502–508

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Aguilera JC, Nakayama K, Arroyo A, Villalba JM and Navas P (1993) Transplasma membrane redox system of HL-60 cells is controlled by cAMP. J Biol Chem 268(35): 26346–26349

    CAS  PubMed  Google Scholar 

  • Santos-Ocana C, Villalba JM, Cordoba F, Padilla S, Crane FL and Clarke CF et al. (1998) Genetic evidence for coenzyme Q requirement in plasma membrane electron transport. J Bioenerg Biomembranes 30(5): 465–475

    Article  CAS  Google Scholar 

  • Slater AF, Stefan C, Nobel I, van den Dobbelsteen DJ and Orrenius S (1995) Signalling mechanisms and oxidative stress in apoptosis. Toxicol Lett 82–83: 149–153

    Article  PubMed  Google Scholar 

  • Sohal RS, Ku HH, Agarwal S, Forster MJ and Lal H (1994) Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 74(1–2): 121–133

    Article  CAS  PubMed  Google Scholar 

  • Sun IL, Navas P, Crane FL, Chou JY and Low H (1986) Transplasmalemma electron transport is changed in simian virus 40 transformed liver cells. J Bioenerg Biomembranes 18(6): 471–485

    Article  CAS  Google Scholar 

  • Sun IL, Sun EE, Crane FL and Morre DJ (1990) Evidence for coenzyme Q function in transplasma membrane electron transport. Biochem Biophys Res Commun 172(3): 979–984

    Article  CAS  PubMed  Google Scholar 

  • Villalba JM, Canalejo A, Rodriguez-Aguilera JC, Buron MI, Moore DJ and Navas P (1993) NADH-ascorbate free radical and -ferricyanide reductase activities represent different levels of plasma membrane electron transport. J Bioenerg Biomembranes 25(4): 411–417

    Article  CAS  Google Scholar 

  • Villalba JM, Navarro F, Cordoba F, Serrano A, Arroyo A and Crane FL et al. (1995) Coenzyme Q reductase from liver plasma membrane: purification and role in trans-plasma–membrane electron transport. Proc Natl Acad Sci USA 92(11): 4887–4891

    CAS  PubMed  Google Scholar 

  • Yu BP (1994) Free Radicals in Aging. CRC, Boca Raton, Florida

    Google Scholar 

  • Zainal TA, Oberley TD, Allison DB, Szweda LI and Weindruch R (2000) Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle. FASEB J 14(12): 1825–1836

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. de Cabo.

About this article

Cite this article

López-Lluch, G., Rios, M., Lane, M.A. et al. Mouse liver plasma membrane redox system activity is altered by aging and modulated by calorie restriction. AGE 27, 153–160 (2005). https://doi.org/10.1007/s11357-005-2726-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-005-2726-3

Key words

Navigation