Skip to main content
Log in

Laser Deep Penetration Welding of an Aluminum Alloy with Simultaneously Applied Vibrations

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

In aluminum welding, the grain structure of produced seams is an essential factor with respect to the seam properties. In the casting technology the effect of mechanical vibrations on the grain growth during the solidification of liquid metals is known as a refinement method. In this paper, the transferability of this approach from comparatively long-time processes in the field of casting to the short-time process of laser deep penetration welding is investigated. Therefore, specimens were sinusoidal vibrated with frequencies up to 4 kHz during bead-on-plate full-penetration welding experiments. The resulting grain size was determined by applying the circular intercept procedure on the center of a cross-section micrograph of each weld. The results show that grain refinement is in general achievable by mechanical vibrations in the audible frequency range during laser full penetration keyhole welding of the aluminum alloy EN AW-5083.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Duley, W. W.: CO2 Lasers: Effects and Applications (London Academic), pp. 246 (2005)

  2. Kawahito, Y., Matsumoto, N., Abe, Y., Katayama, S.: Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy. J Mater Process Tech 211, 1563–1568 (2011)

    Article  Google Scholar 

  3. Geiger, M., Kägeler, C., Schmidt, M.: High-power laser welding of contaminated steel sheets. Product Eng - Res Dev 2, 235–240 (2008)

    Article  Google Scholar 

  4. Otto, A., Koch, H., Leitz, K.H., Schmidt, M.: Numerical simulations – a versatile approach for better understanding dynamics in laser material processing. Phys. Procedia 12, 11–20 (2011)

    Article  Google Scholar 

  5. Volpp, J., Vollertsen, F.: Modeling keyhole oscillations during laser deep penetration welding at different spatial laser intensity distributions. Prod Eng - Res Dev 9, 167–178 (2015)

    Article  Google Scholar 

  6. Cui, Y., Xu, C., Han, Q.: Microstructure improvement in weld metal using ultrasonic vibrations. Adv. Eng. Mater. 9, 161–162 (2007)

    Article  Google Scholar 

  7. Oettel, H., Schumann, H.: Metallografie. 15. Auflage Wiley–VCH Verlag Weinheim. (2011) (German)

  8. Dommaschk, C.: Beitrag zur Gefügebeeinflussung erstarrender Metallschmelzen durch vibration. Technischen Universität Bergakademie Freiberg, Freiberg (2003) (German)

    Google Scholar 

  9. Schempp, P., Cross, C.E., Schwenk, C., Rethmeier, M.: Influence of Ti and B additions on grain size and weldability of aluminium alloy 6082. Weld World 56, 95–104 (2012)

    Article  Google Scholar 

  10. Tang, Z., Vollertsen, F.: Influence of grain refinement on hot cracking in laser welding of aluminum. Weld. World 58, 355–366 (2014)

    Article  Google Scholar 

  11. Chen, X.-G., Ellerbrock, R., Engler, S.: Versuche zur phys. Kornfeinung bei austen. Stahlguß und bei Kupferlegierungen. Gießereiforschung 48, 1–7 (1996). German

    Google Scholar 

  12. Sakwa, W., Gawronski, J., Szajnar, J.: Einfluß eines rotierenden Umkehr– magnetfelds auf die Erstarrung von Aluminiumgußstücken. Gießereiforschung 40, 17–22 (1988) (German)

    Google Scholar 

  13. Kou, S., Le, Y.: Grain structure and solidification cracking in oscillated arc welds of 5052 aluminum alloy. Metall. Trans. A 16, 1345–1352 (1985)

    Article  Google Scholar 

  14. Dommaschk, C., Hübler, J.: Auswirkungen einer Vibrationsbehandlung auf das Erstarrungs– und Speisungsverhalten von Gußwerkstoffen. Giesserei–Praxis. 12, 505–512 (2003) (German)

    Google Scholar 

  15. Kou, S.: Welding metallurgy. Wiley Inc, Hoboken (2003)

    Google Scholar 

  16. Xu, J., Cen, L., Ni, C.: Effect of vibratory weld conditioning on the residual stresses and distortion in multipass girth–butt welded pipes. Int. J. Vessels Piping 84, 298–303 (2007)

    Article  Google Scholar 

  17. Campbell, J.: Effects of vibration during solidification. Int. Metals Rev. 2, 71–108 (1981)

    Google Scholar 

  18. Tewari, S.P.: Influence of longitudinal oscillation on tensile properties of medium carbon steel welds of different thickness. Thammasat Int. J. Sci. Technol. 14, 17–27 (2009)

    Google Scholar 

  19. Pučko, B., Gliha, V.: Effect of vibration on weld metal hardness and toughness. Sci. Technol. Weld. Joi. 10, 335 338 (2005)

  20. Hussein, A.R., Jail, N.A.A., Tabil, A.R.A.: Improvement of mechanical welding properties by using induced harmonic vibration. J. Appl. Sci. 11, 348–353 (2011)

    Article  Google Scholar 

  21. Gericke, A., Banaschik, R., Henkel, K.-M.: Zähigkeitserhöhung durch Schmelzbadvibration UP–geschweißter Feinkornbaustähle. Tagungsband DVS–Berichte 315, 695–700 (2015) (German)

    Google Scholar 

  22. Aoki, S., Nishimura, T., Hiroi, T., Hirai, S.: Reduction method for residual stress of welded joint using harmonic vibrational load. Nucl. Eng. Des. 237, 206–212 (2007)

    Article  Google Scholar 

  23. Balasubramanian, K.: Studies of the effect of vibration on hot cracking and grain size in AA 7075 aluminium alloy welding. Int. J. Eng. Sci. Technol. 3, 681–686 (2011)

    Google Scholar 

  24. Dai, W.L.: Effects of high–intensity ultrasonic–wave emission on the weldability of aluminum alloy 7075–T6. Mater. Lett. 57, 2447–2454 (2003)

    Article  Google Scholar 

  25. Kou, S., Le, Y.: Nucleation mechanism and grain refining of weld metal. Weld. J. 65, 65–70 (1986)

    Google Scholar 

  26. Pearce, B.P., Kerr, H.W.: Grain refinement in magnetically stirred GTA welds of aluminum alloys. Metall. Trans. B 12, 479–486 (1981)

    Article  Google Scholar 

  27. Rao, S.R.K., Reddy, G.M., Kamaraj, M., Rao, K.P.: Grain refinement through arc manipulation techniques in Al – Cu alloy GTA welds. Mat. Sci. Eng. A-Struct. 404, 227–234 (2005)

    Article  Google Scholar 

  28. Bronstein, I., N., Semendjajew, A., A., Musiol, G., Mühlig, H.: Taschenbuch der Mathematik (2000) (German)

  29. Voort, V., George, F.: ASM handbook, volume 09— metallography and microstructures. ASM International (2004)

Download references

Acknowledgments

This work was accomplished within the Center of Competence for Welding of Aluminum Alloys (Centr-Al). The authors gratefully acknowledge financial support of this work by the Deutsche Forschungsgemeinschaft (DFG VO 530/85-1: Identifizierung des Einflusses mechanischer Schwingungen auf den Erstarrungsprozess beim Tiefschweißen, in German) and thank exceedingly Florian Schmidt for supporting and supervising the experimental works and Marius Gatzen for his support.

The “BIAS ID” numbers are part of the figures and allow the retraceability of the results with respect to mandatory documentation required by the funding organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peer Woizeschke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woizeschke, P., Radel, T., Nicolay, P. et al. Laser Deep Penetration Welding of an Aluminum Alloy with Simultaneously Applied Vibrations. Lasers Manuf. Mater. Process. 4, 1–12 (2017). https://doi.org/10.1007/s40516-016-0032-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-016-0032-9

Keywords

Navigation