Skip to main content

Advertisement

Log in

Microstructural Characteristics and Mechanical Properties of Friction Stir Welded 2219 Aluminum Alloy Plate After Spinning and Heat Treatment

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A 3.2 mm thin-walled 2219 aluminum alloy hemisphere shell was successfully fabricated by friction stir welding (FSW) combined with spinning and subsequent T6 treatment. The microstructural characteristics and the mechanical properties of the spun FSWed alloy were investigated. The results showed that the differences in microstructure of the base material and the joint were greatly improved during the spinning process, which consisted of fine dynamic recrystallization (DRX) grains with an average grain size of 4.7 μm and 6.6 μm, respectively. The microstructure and the mechanical properties of the joint were similar to the base material. After the solid solution, the uniformly distributed θ phase particles were greatly dissolved in the Al matrix and the growth of the grains was promoted. Besides, the dislocation densities were significantly decreased. However, a large quantity of needle-like θ′ phase precipitates evenly distributed in the matrix after T6 treatment. Moreover, the strengths were further improved to 291.6 MPa and 331.8 MPa after T6 treatment due to the high density of θ′ precipitates by hindering the dislocation movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.C. Lin, L.T. Li, Y.C. Xia, and Y.Q. Jiang, Hot Deformation and Processing Map of a Typical Al-Zn-Mg-Cu Alloy, J. Alloys Compd., 2013, 550, p 438-445.

    Article  CAS  Google Scholar 

  2. K. Surekha, B.S. Murty, and K.P. Rao, Microstructural Characterization and Corrosion Behavior of Multipass Friction Stir Processed AA2219 Aluminum Alloy, Surf. Coat. Technol., 2008, 202, p 4057-4068.

    Article  CAS  Google Scholar 

  3. T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminum Alloys, Mater. Des., 2014, 56, p 862-871.

    Article  CAS  Google Scholar 

  4. S.J. Hales, W.A. Tayon, and E.K. Hoffman, AGG Suppression in Friction-Stir-Welded, Spin-Formed Al-Li 2195 Materials; Presentation at the Friction Stir Welding and Processing VI Symposium, TMS Annual Meeting, San Diego, CA, March (2011)

  5. S.J. Hales and W.A. Tayon, Heat Treatment of a Friction-Stir-Welded and Spin-Formed Al-Li Alloy, Proc. Eng., 2011, 10, p 2496-2501.

    Article  CAS  Google Scholar 

  6. C. Genevois, A. Deschamps, A. Denquin, and B. DoisneauCottignies, Quantitative Investigation of Precipitation and Mechanical Behaviour for AA2024 Friction Stir Welds, Acta Mater., 2005, 53(8), p 2447-2458.

    Article  CAS  Google Scholar 

  7. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1-78.

    Article  Google Scholar 

  8. R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties, Prog. Mater. Sci., 2008, 53(6), p 980-1023.

    Article  CAS  Google Scholar 

  9. Y.C. Chen and K. Nakata, Friction Stir Lap Joining Aluminum and Magnesium Alloys, Scr. Mater., 2008, 58(6), p 433-436.

    Article  CAS  Google Scholar 

  10. M. Bakkiyaraj, S. Stephen Bernard, G. Saikrishnan, S. Guruyogesh, T.G. Guruprasanna, and K. Dineshkumar, Effect of Tool Offset Condition on Mechanical and Metallurgical Properties of FSW Dissimilar Al-Cu Joint, Mater. Today Proc., 2021, 43, p 824-827.

    Article  CAS  Google Scholar 

  11. Y.G. Hao and W. Liu, Analysis on Exceptional Cryogenic Mechanical Properties of AA2219 Alloy FSW Joints in Multi-scale, Mater. Sci. Eng. A, 2022, 850, p 143489.

    Article  CAS  Google Scholar 

  12. N. Kamp, A. Sullivan, R. Tomasi, and J.D. Robson, Modelling of Heterogeneous Precipitate Distribution Evolution during Friction Stir Welding Process, Acta Mater., 2006, 54, p 2003-2014.

    Article  CAS  Google Scholar 

  13. G. Buffa, G. Campanile, L. Fratini, and A. Prisco, Friction Stir Welding of Lap Joints: Influence of Process Parameters on the Metallurgical and Mechanical Properties, Mater. Sci. Eng. A, 2009, 519, p 19-26.

    Article  Google Scholar 

  14. K. Kumar, S.V. Kailas, and T.S. Srivatsan, Influence of Tool Geometry in Friction Stir Welding, Mater. Manuf. Process., 2008, 23, p 188-194.

    Article  CAS  Google Scholar 

  15. G. Buffa, J. Hua, R. Shivpuri, and L. Fratini, Design of the Friction Stir Welding Tool using the Continuum Based FEM Model, Mater. Sci. Eng. A, 2006, 419, p 381-388.

    Article  Google Scholar 

  16. T.S. Srivatsan, S. Vasudevan, L. Park, and R.J. Lederich, The High Cycle Fatigue and Fracture Behavior of Friction Stir Welded Aluminum Alloy 2024, KEM, 2008, 378-379, p 175-206.

    Article  CAS  Google Scholar 

  17. T.S. Liu, F. Qiu, H.Y. Yang, S. Liu, Q.C. Jiang, and L.C. Zhang, Exploring the Potential of FSW-ed Al-Zn-Mg-Cu-Based Composite Reinforced by Trace In-Situ Nanoparticles in Manufacturing Workpiece with Customizable Size and High Mechanical Performances, Compos. B, 2023, 250, p 110425.

    Article  CAS  Google Scholar 

  18. P. Asadi, M.R.M. Aliha, M. Akbari, D.M. Imani, and F. Berto, Multivariate Optimization of Mechanical and Microstructural Properties of Welded Joints by FSW Method, Eng. Fail. Anal., 2022, 140, p 106528.

    Article  CAS  Google Scholar 

  19. A.R. Hossein, V.T. Farid, and A.S.S. Mohammad, Creep Lifetime of Al 6061-T6 Pressurized Rotating Friction Stir Welded Tube Subjected to Internal Pressure and Rotational Velocity: Welding and Creep Lifetime Optimization, Int. J. Press. Vessels Pip., 2023, 202, p 104914.

    Article  Google Scholar 

  20. X.W. Zhu, Y. Deng, Y. Lai, Y.F. Guo, Z.A. Yang, L. Fu, G.F. Xu, and J.W. Huang, Effects of Al3(Sc1-xZrx) Nano-Particles on Microstructure and Mechanical Properties of Friction-Stir-Welded Al-Mg-Mn Alloys, Trans. Nonferrous Met. Soc. China, 2023, 33, p 25-35.

    Article  CAS  Google Scholar 

  21. S.J. Yuan, Z.L. Hu, and X.S. Wang, Evaluation of Formability and Material Characteristics of Aluminum Alloy Friction Stir Welded Tube Produced by a Novel Process, Mater. Sci. Eng. A, 2012, 543, p 210-216.

    Article  CAS  Google Scholar 

  22. F. Dong, Y.P. Yi, S.Q. Huang, H.L. He, J.W. Huang, C.G. Wang, and K. Huang, Refinement of Second-Phase Particles and Grain Structures of 2219 Al-Cu Alloy Forgings using an Improved Thermomechanical Treatment Process, Mater. Character., 2021, 173, p 110927.

    Article  CAS  Google Scholar 

  23. Z.H. Wang, Y.F. Gao, J.L. Huang, C.D. Wu, G.L. Wang, and J. Liu, Precipitation Phenomena and Strengthening Mechanism of Al-Cu Alloys Deposited by In-Situ Rolled Wire-Arc Additive Manufacturing, Mater. Sci. Eng. A, 2022, 855, p 143770.

    Article  CAS  Google Scholar 

  24. B. Bellon, S. Haouala, and J. Llorca, An Analysis of the Influence of the Precipitate Type on the Mechanical Behavior of Al-Cu Alloys by Means of Micropillar Compression Tests, Acta Mater., 2020, 194, p 207-223.

    Article  CAS  Google Scholar 

  25. A.M. Richard, S. Kevin, B. Sumit, F.A. Lawrence, B.W. Karla, D.P. Jonathan, N.L. Donovan, R.D. Ryan, P. Alex, and S. Amit, Microstructural Evolution and Strengthening Mechanisms in a Heat-Treated Additively Manufactured Al-Cu-Mn-Zr Alloy, Mater. Sci. Eng. A, 2022, 840, p 142928.

    Article  Google Scholar 

  26. H. Gao, Y. Huang, W. Nix, and J. Hutchinson, Mechanism-Based Strain Gradient Plasticity—I, Theory, J. Mech. Phys. Solids, 1999, 47(6), p 1239-1263.

    Article  Google Scholar 

  27. L.P. Kubin and A. Mortensen, Geometrically Necessary Dislocations and Strain-Gradient Plasticity: A Few Critical Issues, Scr. Mater., 2003, 48(2), p 119-125.

    Article  CAS  Google Scholar 

  28. D. Liu, D. Wu, G. Ma, C. Zhong, F. Niu, A. Gasser, J.H. Schleifenbaum, and G. Bi, Effect of Post-Deposition Heat Treatment on Laser-TIG Hybrid Additive Manufactured Al-Cu Alloy, Virtual Phys. Prototyp., 2020, 15(4), p 445-459.

    Article  Google Scholar 

  29. Z.X. Li, M. Zhan, X.G. Fan, X.X. Wang, and F. Ma, Age Hardening Behaviors of Spun 2219 Aluminum Alloy Component, J. Mater. Res. Technol., 2020, 9(3), p 4706-4716.

    Article  CAS  Google Scholar 

  30. X. Mao, Y. Yi, H. He, S. Huang, and W. Guo, Second Phase Particles and Mechanical Properties of 2219 Aluminum Alloys Processed by an Improved Ring Manufacturing Process, Mater. Sci. Eng. A, 2020, 781, p 139226.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. L. Yang or L. H. Zhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Z.L., Huang, M.H., Wang, X.B. et al. Microstructural Characteristics and Mechanical Properties of Friction Stir Welded 2219 Aluminum Alloy Plate After Spinning and Heat Treatment. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09438-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09438-y

Keywords

Navigation