Skip to main content

Advertisement

Log in

Insights into the physiological and molecular responses of plants to iron and zinc deficiency

  • Review Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Iron (Fe) and Zinc (Zn) are vital micronutrients for plants and their deficiency causes severe impairments in physiological and biochemical responses of plants. In response to stress emerging due to their deficiency, plants evolve different strategies to regulate the homeostasis network to ensure optimum Fe and Zn uptake. Fe and Zn biofortification of food crops offer a promising approach to alleviate the malnutrition caused due to their deficiency. However, the complex mechanism underlying the fine-tuned processes of mineral uptake, transport and accumulation in seeds involve a multitude of regulatory insights including alteration in root morphology, nutrient partitioning and subsequent accumulation in seeds mediated by different transporters, chelators, transcription factors and post transcriptional regulation which act in a coordinated manner to elicit responses in plants regulating Fe and Zn acquisition. These insights into the regulatory mechanisms will provide a better understanding for improving the Fe- and Zn- use efficiencies, maximization of Fe and Zn bioavailability in edible parts, the deficiency tolerance attributes and subsequent Fe and Zn- biofortification in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alloway, B. J. (2009). Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health, 31, 537–548. https://doi.org/10.1007/s10653-009-9255-4

    Article  CAS  PubMed  Google Scholar 

  • Assunção, A. G., Herrero, E., Lin, Y. F., Huettel, B., Talukdar, S., Smaczniak, C., et al. (2010). Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America, 107, 10296–10301. https://doi.org/10.1073/pnas.1004788107

    Article  PubMed  PubMed Central  Google Scholar 

  • Astudillo, C., Fernandez, A., Blair, M. W., & Cichy, K. A. (2013). The Phaseolus vulgaris ZIP gene family: Identification, characterization, mapping, and gene expression. Frontiers in Plant Science, 4, 286. https://doi.org/10.3389/fpls.2013.00286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae, Y. S., Oh, H., Rhee, S. G., & Do Yoo, Y. D. (2011). Regulation of reactive oxygen species generation in cell signaling. Molecules and Cells, 32, 491–509. https://doi.org/10.1007/s10059-011-0276-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barberon, M., Vermeer, J. E., De-Bellis, D., Wang, P., Naseer, S., Andersen, T. G., Humbel, B. M., Nawrath, C., Takano, J., Salt, D. E., & Geldner, N. (2016). Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell, 164, 447–459.

    Article  CAS  PubMed  Google Scholar 

  • Bariya, H., Singh, A. L., Vidya Chaudhari. (2015). Measurement of Fe (II) and Fe (III) in groundnut by in-column and post column reactions in ion-chromatography. Communications in Soil Science and Plant Analysis, 46, 358–366.

  • Bashir, K., Ishimaru, Y., Shimo, H., Kakei, Y., Senoura, T., Takahashi, R., Sato, Y., Sato, Y., Uozumi, N., Nakanishi, H., & Nishizawa, N. K. (2011). Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron. Soil Sci Plant Nutr, 57, 803–812.

    Article  CAS  Google Scholar 

  • Begum, M. C., Islam, M., Sarkar, M. R., Azad, M. A. S., Huda, A. K. M., & Kabir, A. H. (2016). Auxin signaling is closely associated with Zn-efficiency in rice (Oryza sativa L.). Journal of Plant Interactions, 11(1), 124–129. https://doi.org/10.1080/17429145.2016.1220026

    Article  CAS  Google Scholar 

  • Bienfait, H. F. (1988). Mechanisms in Fe-efficiency reactions of higher plants. Journal of Plant Nutrition, 11, 605–610.

    Article  CAS  Google Scholar 

  • Bughio, N., Yamaguchi, H., Nishizawa, N. K., Nakanishi, H., & Mori, S. (2002). Cloning an iron-regulated metal transporter from rice. Journal of Experimental Botany, 53(374), 1677–1682.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak, I. (2000). Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist, 146, 185–205.

    Article  CAS  Google Scholar 

  • Cakmak, I and Marschner, H. (1988). Increase in membrane permeability and exudation in roots of zinc deficient plants. Journal of Plant Physiology, 132(3), 356–361. ISSN 0176-1617. https://doi.org/10.1016/S0176-1617(88)80120-2.

  • Cakmak, I., Marschner, H., & Bangerth, F. (1989). Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris L.). Journal of Experimental Botany, 40, 405–412.

    Article  CAS  Google Scholar 

  • Chen, W. W., Yang, J. L., Qin, C., Jin, C. W., Mo, J. H., Ye, T., & Zheng, S. J. (2010). Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiology, 154, 810–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colangelo, E. P., & Guerinot, M. L. (2004). The essential bHLH protein FIT1 is required for the iron deficiency response. The Plant Cell, 16, 3400–3412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curie, C., Panaviene, Z., Loulergue, C., Dellaporta, S. L., Briat, J. F., & Walker, E. L. (2001). Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake. Nature, 409, 346–349.

    Article  CAS  PubMed  Google Scholar 

  • Curie, C., Cassin, G., Couch, D., Divol, F., Higuchi, K., Le Jean, M., Misson, J., Schikora, A., Czernic, P., & Mari, S. (2009). Metal movement within the plant: Contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 103, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Del Rio, L. A. (2015). ROS and RNS in plant physiology: An overview. Journal of Experimental Botany, 66, 2827–2837.

  • Eckhardt, U., Marques, A. M., & Buckhout, T. J. (2001). Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Molecular Biology, 45, 437–448.

    Article  CAS  PubMed  Google Scholar 

  • Eide, D., Broderius, M., Fett, J., & Guerinot, M. L. (1996). A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences of the United States of America, 93(11), 5624–5628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evens, N. P., Buchner, P., Williams, L. E., & Hawkesford, M. J. (2017). The role of ZIP transporters and group F bZIP transcription factors in the Zn−deficiency response of wheat (Triticum aestivum). The Plant Journal, 92, 291–304. https://doi.org/10.1111/tpj.13655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia, M. J., Suarez, V., Romera, F. J., Alcantara, E., & Perez-Vicente, R. (2011). A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants. Plant Physiology and Biochemistry, 49, 537–544.

    Article  CAS  PubMed  Google Scholar 

  • Garnica, M., Bacaicoa, E., Mora, V., San Francisco, S., Baigorri, R., Zamarreño, A. M., & Garcia-Mina, J. M. (2018). Shoot iron status and auxin are involved in iron deficiency-induced phytosiderophores release in wheat. BMC Plant Biology, 18, 105. https://doi.org/10.1186/s12870-018-1324-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giehl, R. F., Lima, J. E., & Wiren, N. (2012). Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution. The Plant Cell, 1, 33–49.

    Article  Google Scholar 

  • Graziano, M., & Lamattina, L. (2005). Nitric oxide and iron in plants: An emerging and converging story. Trends in Plant Science, 10, 4–8.

    Article  CAS  PubMed  Google Scholar 

  • Graziano, M., & Lamattina, L. (2007). Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. The Plant Journal, 52, 949–960.

    Article  CAS  PubMed  Google Scholar 

  • Grotz, N., & Guerinot, M. L. (2006). Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochimica Et Biophysica Acta, 1763(7), 595–608.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, B., Pathak, G. C., & Pandey, N. (2011). Induction of oxidative stress and antioxidant responses in Vigna mungo by zinc stress. Russian Journal of Plant Physiology, 58, 85–91.

    Article  CAS  Google Scholar 

  • Hanikenne, M., Talke, I. N., Haydon, M. J., Lanz, C., Nolte, A., Motte, P., Kroymann, J., Weigel, D., & Krämer, U. (2008). Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature, 453, 391. https://doi.org/10.1038/nature06877

    Article  CAS  PubMed  Google Scholar 

  • Hassan, M. U., Aamer, M., Chattha, M. U., Haiying, T., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., Liu, Y., & Guoqin, H. (2020). The Critical Role of Zinc in Plants Facing the Drought Stress. Agriculture, 10, 0396. https://doi.org/10.3390/agriculture10090396

    Article  CAS  Google Scholar 

  • Haydon, M. J., & Cobbett, C. S. (2007). Transporters of ligands for essential metal ions in plants. New Phytologist, 174, 499–506. https://doi.org/10.1111/j.1469-8137.2007.02051.x

    Article  CAS  Google Scholar 

  • Henriques, R., Jasik, J., Klein, M., Martinoia, E., Feller, U., Schell, J., Pais, M. S., & Koncz, C. (2002). Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Molecular Biology, 50(4–5), 587–597.

    Article  CAS  PubMed  Google Scholar 

  • Henriques, A., Farias, D., & de Oliveira Costa, A. (2017). Identification and characterization of the bZIP transcription factor involved in zinc homeostasis in cereals. Genetics and Molecular Research, 16, 1–10. https://doi.org/10.4238/gmr16029558

    Article  CAS  Google Scholar 

  • Hindt, M. N., & Guerinot, M. L. (2012). Getting a sense for signals: Regulation of the plant iron deficiency response. Biochimica Et Biophysica Acta, 1823, 1521–1530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain, D., Haydon, M. J., Wang, Y., Wong, E., Sherson, S. M., Young, J., Camakaris, J., Harper, J. F., & Cobbett, C. S. (2004). P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. The Plant Cell, 16, 1327–1339. https://doi.org/10.1105/tpc.020487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., Wada, Y., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2006). Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. The Plant Journal, 45(3), 335–346.

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru, Y., Masuda, H., Suzuki, M., Bashir, K., Takahashi, M., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2007). Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. Journal of Experimental Botany, 58(11), 2909–2915.

    Article  CAS  PubMed  Google Scholar 

  • Jakoby, M., Wang, H. Y., Reidt, W., Weissharr, B., & Bauer, P. (2004). FRU(BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Letters, 577, 528–534.

    Article  CAS  PubMed  Google Scholar 

  • Jolley, V. D., Cook, K. A., Hansen, N. C., & Stevens, W. B. (1996). Plant physiological responses for genotypic evaluation of iron efficiency in strategy I and strategy II plants—A review. Journal of Plant Nutrition, 19(8–9), 1241–1255. https://doi.org/10.1080/01904169609365195

    Article  CAS  Google Scholar 

  • Kabir, A.H., Hossain, M.M., Khatun, M.A., Sarkar, M.R. and Haider, S.A. (2017). Biochemical and molecular mechanisms associated with Zn deficiency tolerance and signaling in rice (Oryza sativa L.), J. Plant Interactions, 12(1): 447–456. DOI: https://doi.org/10.1080/17429145.2017.1392626

  • Karim, M., Zhang, Y. Q., Zhao, R. R., Chen, X. P., Zhang, F. S., & Zou, C. Q. (2012). Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. Journal of Plant Nutrition and Soil Science, 175, 142–151.

    Article  Google Scholar 

  • Kobayashil, T., Nakayama, Y., Itai, R. N., Nakanishi, H., Yoshihara, T., Mori, S., & Nishizawa, N. K. (2003). Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterologous tobacco plants. The Plant Journal, 36, 780–793.

    Article  Google Scholar 

  • Krishna Ajeesh, T. P., Maharajan, T., Roch, G. V., Ignacimuthu, S., & Ceasar, S. A. (2020). Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Frontiers in Plant Science, 11, 662. https://doi.org/10.3389/fpls.2020.00662

    Article  Google Scholar 

  • Krishna, T. P. A., Ceasar, S. A., Maharajan, T., Ramakrishnan, M., Duraipandiyan, V., Al-Dhabi, N., & Ignacimuthu, S. (2017). Improving the zinc-use efficiency in plants: A review. SABRAO J. Breed. Genet, 49, 221–230.

    Google Scholar 

  • Kumar, L., Meena, N. L., & Singh, U. (2016) Zinc Transporter: Mechanism for Improving Zn Availability. In U. Singh, C. Praharaj, S. Singh, N. Singh (eds) Biofortification of Food Crops. New Delhi: Springer. https://doi.org/10.1007/978-81-322-2716-8_11.

    Chapter  Google Scholar 

  • Kumar, A., Sahu, C., Panda, P. A., Biswal, M., Sah, R. P., Lal, M. K., Baig, M. J., Swain, P., Behera, L., & Chattopadhyay, K. (2019). Phytic acid content may affect starch digestibility and glycemic index value of rice (Oryza sativa L.). Journal of the Science of Food and Agriculture.. https://doi.org/10.1002/jsfa.10168

    Article  PubMed  Google Scholar 

  • Kumar, A., Nayak, S., Ngangkham, U., Sah, R. P., Lal, M. K., TP, A., & Sharma, S., (2021). A single nucleotide substitution in the SPDT transporter gene reduced phytic acid and increased mineral bioavailability from Rice grain (Oryza sativa L.). Journal of Food Biochemistry,. https://doi.org/10.1111/jfbc.13822.

    Article  PubMed  Google Scholar 

  • Kumar, A., Lal, M. K., Kar, S. S., Nayak, L., Ngangkham, U., Samantaray, S., & Sharma, S. G. (2017). Bioavailability of iron and zinc as affected by phytic acid content in rice grain. Journal of Food Biochemistry, 41(6), e12413. https://doi.org/10.1111/jfbc.12413

    Article  CAS  Google Scholar 

  • Kumar, A., Singh, B., Raigond, P., Sahu, C., Mishra, U. N., Sharma, S., & Lal, M. K. (2021a). Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Research International, 142, 110193. https://doi.org/10.1016/j.foodres.2021.110193

    Article  CAS  PubMed  Google Scholar 

  • Lal, M. K., Kumar, A., Kardile, H. B., Raigond, P., Changan, S. S., Thakur, N., et al. (2020). Biofortification of vegetables. In T. R. Sharma, R. Deshmukh, & H. Sonah (Eds.), Advances in agri-food biotechnology. Singapore: Springer. https://doi.org/10.1007/978-981-15-2874-3_5.

    Chapter  Google Scholar 

  • Lee, S., & An, G. (2009). Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, Cell and Environment, 32(4), 408–416.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., Chiecko, J. C., Kim, S. A., Walker, E. L., Lee, Y., Guerinot, M. L., & An, G. (2009). Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiology, 150, 786–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei, G. J., Zhu, X. F., Wang, Z. W., Dong, F., Dong, N. Y., & Zheng, S. J. (2014). Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. Plant, Cell and Environment, 37, 852–863. https://doi.org/10.1111/pce.12203

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Zhou, X., Huang, Y., Zhu, L., Zhang, S., Zhao, Y., et al. (2013). Identification and characterization of the zinc-regulated transporters, ironregulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biology, 13, 114. https://doi.org/10.1186/1471-2229-13-114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S., Zhou, J., Chen, J., & Chen, R. (2016). Is there a strategy I iron uptake mechanism in maize? Plant Signaling & Behavior. https://doi.org/10.1080/15592324.2016.1161877

    Article  Google Scholar 

  • Lilay, G. H., Castro, P. H., Campilho, A., & Assunção, A. G. (2018). The Arabidopsis bZIP19 and bZIP23 activity requires zinc deficiency–insight on regulation from complementation lines. Frontiers in Plant Science, 9, 1955. https://doi.org/10.3389/fpls.2018.01955

    Article  PubMed  Google Scholar 

  • Lingam, S., Mohrbacher, J., Brumbarova, T., Potuschak, T., Fink-Straube, C., Blondet, E., Genschik, P., & Bauer, P. (2011). Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. The Plant Cell, 23, 1815–1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long, T. A., Tsukagoshi, H., Busch, W., Lahner, B., Salt, D. E., & Benfey, P. N. (2010). The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. The Plant Cell, 22, 2219–2236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Millan, A. F., Grusak, M. A., & Abadia, J. (2012). Carboxylate metabolism changes induced by Fe deficiency in Barley, a strategy II plant species. Journal of Plant Physiology, 169, 1121–1124.

    Article  CAS  PubMed  Google Scholar 

  • Maser, P., Thomine, S., Schroeder, J. I., Ward, J. M., Hirschi, K., Sze, H., Talke, I. N., Amtmann, A., Maathuis, F. J., Sanders, D., et al. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 126(4), 1646–1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurer, F., Müller, S., & Bauer, P. (2011). Suppression of Fe deficiency gene expression by jasmonate. Plant Physiol Bioch., 49(5), 530–536.

    Article  CAS  Google Scholar 

  • Michael, P. I., & Krishnaswamy, M. (2011). The effect of zinc stress combined with high irradiance stress on membrane damage and antioxidative response in bean seedlings. Environmental and Experimental Botany, 74, 171–177.

    Article  CAS  Google Scholar 

  • Moreau, S., Thomson, R. M., Kaiser, B. N., Trevaskis, B., Guerinot, M. L., Udvardi, M. K., Puppo, A., & Day, D. A. (2002). GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. Journal of Biological Chemistry, 277(7), 4738–4746.

    Article  CAS  Google Scholar 

  • Moreno-Lora, A., Recena, R., & Delgado, A. (2019). Bacillus subtilis QST713 and cellulose amendment enhance phosphorus uptake while improving zinc biofortification in wheat. Applied Soil Ecology, 142, 81–89. https://doi.org/10.1016/j.apsoil.2019.04.01

    Article  Google Scholar 

  • Muller, M., & Schmidt, W. (2004). Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiology, 134, 409–419.

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro-Leon, E., Albacete, A., Torre- Gonzalez, A. T., Ruiz, J. M., & Blasco, B. (2016). Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency. Phytochemistry. https://doi.org/10.1016/j.phytochem.2016.08.003

    Article  PubMed  Google Scholar 

  • Nishida, S., Tsuzuki, C., Kato, A., Aisu, A., Yoshida, J., & Mizuno, T. (2011). AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant and Cell Physiology, 52(8), 1433–1442.

    Article  CAS  PubMed  Google Scholar 

  • Nozoye, T., Nagasaka, S., Kobayashi, T., Takahashi, M., Sato, Y., Sato, Y., Uozumi, N., Nakanishi, H., & Nishizawa, N. K. (2011). Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. Journal of Biological Chemistry, 286, 5446–5454.

    Article  CAS  Google Scholar 

  • Ogo, Y., Itai, R. N., Nakanishi, H., Inoue, H., Kobayashi, T., Suzuki, M., Takahashi, M., Mori, S., & Nishizawa, N. K. (2006). Isolation and characterization of IRO2, a novel iron regulated bHLH transcription factor in graminaceous plants. Journal of Experimental Botany, 57, 2867–2878.

    Article  CAS  PubMed  Google Scholar 

  • Ogo, Y., Itai, R. N., Kobayashi, T., Aung, M. S., Nakanishi, H., & Nishizawa, N. K. (2011). OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Molecular Biology, 75, 593–605.

    Article  CAS  PubMed  Google Scholar 

  • Palmgren, M. G., Clemens, S., Williams, L. E., Krämer, U., Borg, S., Schjørring, J. K., & Sanders, D. (2008). Zinc biofortification of cereals: Problems and solutions. Trends in Plant Science, 13, 464–473. https://doi.org/10.1016/j.tplants.2008.06.005

    Article  CAS  PubMed  Google Scholar 

  • Parveen, S., Gupta, D. B., Dass, S., Kumar, A., Pandey, A., Chakraborty, S., & Chakraborty, N. (2016). Chickpea ferritin cafer1 participates in oxidative stress response, and promotes growth and development. Science and Reports, 6, 31218.

    Article  CAS  Google Scholar 

  • Potters, G., de Gara, L., Asard, H., & Horemans, N. (2002). Ascorbate and glutathione: Guardians of the cell cycle, partners in crime? Plant Physiology and Biochemistry, 40, 537–548.

    Article  CAS  Google Scholar 

  • Qi, Y., Wang, S., Shen, C., Zhang, S., Chen, Y., Xu, Y., Liu, Y., Wu, Y., & Jiang, D. (2011). OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa). New Phytologist, 193, 109–120.

    Article  Google Scholar 

  • Qin, L., Han, P., Chen, L., Walk, T. C., Li, Y., Hu, X., et al. (2017). Genome-wide identification and expression analysis of NRAMP family genes in soybean (Glycine Max L.). Frontiers Plant Science, 8, 1436.

    Article  Google Scholar 

  • Ramirez, L., Simontacchi, M., Murgia, I., Zabaleta, E., & Lamattina, L. (2011). Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: A well- equipped team to preserve plant iron homeostasis. Plant Science, 181(5), 582–592.

    Article  CAS  PubMed  Google Scholar 

  • Ramírez, L., Bartoli, C. G., & Lamattina, L. (2013). Glutathione and ascorbic acid protect Arabidopsis plants against detrimental effects of iron deficiency. Journal of Experimental Botany, 64, 3169–3178. https://doi.org/10.1093/jxb/ert153

    Article  CAS  PubMed  Google Scholar 

  • Ranieri, A., Castagna, A., Baldan, B., & Soldatini, G. F. (2001). Iron deficiency differently affects peroxidase isoforms in sunflower. Journal of Experimental Botany, 52, 25–35. https://doi.org/10.1093/jexbot/52.354.25

    Article  CAS  PubMed  Google Scholar 

  • Rasouli-Sadaghiani, M. H., Sadeghzadeh, B., Sepehr, E., & Rengel, Z. (2011). Root exudation and zinc uptake by barley genotypes differing in Zn efficiency. Journal of Plant Nutrition, 34(8), 1120–1132. https://doi.org/10.1080/01904167.2011.558156

    Article  CAS  Google Scholar 

  • Rehman, H., Aziz, T., Farooq, M., Wakeel, A., & Rengel, Z. (2012). Zinc nutrition in rice production systems: A review. Plant and Soil, 361, 203–226.

    Article  CAS  Google Scholar 

  • Rengel, Z. (2015). Availability of Mn, Zn and Fe in the rhizosphere. Journal of Soil Science and Plant Nutrition, 15, 3970–4409. https://doi.org/10.4067/S0718-95162015005000036

    Article  Google Scholar 

  • Rout, G. R., & Sahoo, S. (2015). Role of iron in plant growth and metabolism. Reviews in Agricultural Science. https://doi.org/10.7831/ras.3.1

    Article  Google Scholar 

  • Saibi, W. and Brini, F. (2018). Superoxide dismutase (SOD) and abiotic stress tolerance in plants: An overview. In Magliozzi, S. (Ed.), Superoxide dismutase. Structure, synthesis and applications. Nova Science Publishers, Hauppauuge, NY, USA, (pp. 101–142).

  • Samdur, M. Y., Mathur, R. K., Manivel, P., Singh, A. L., Bandyopadhyay, A., & Chikani, B. M. (1999). Screening of some advanced breeding lines of groundnut for tolerance of lime-induced iron-deficiency chlorosis. Indian Journal of Agricultural Sciences, 69, 722–725.

    Google Scholar 

  • Samdur, M. Y., Singh, A. L., Mathur, R. K., Manivel, P., Chikani, B. M., Gor, H. K., & Khan, M. A. (2000). Field evaluation of Chlorophyll meter for screening groundnut (Arachis hypogaea L) genotypes tolerant of iron-deficiency chlorosis. Current Science, 79(2), 211–214.

    Google Scholar 

  • Santi, S., Cesco, S., Varanini, Z., & Pinton, R. (2005). Two plasma membrane H+-ATPase genes are differentially expressed in iron-deficient cucumber plants. Plant Physiology and Biochemistry, 43, 287–292.

    Article  CAS  PubMed  Google Scholar 

  • Schikora, A., & Schmidt, W. (2002). Formation of transfer cells and H(+)-ATPase expression in tomato roots under P and Fe deficiency. Planta, 215, 304–311.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, W., Tittel, J., & Schikora, A. (2000). Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiology, 122, 1109–1118. https://doi.org/10.1104/pp.122.4.1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Séguéla, M., Briat, J. F., Vert, G., & Curie, C. (2008). Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. The Plant Journal, 55(2), 289–300.

    Article  PubMed  Google Scholar 

  • Sekimoto, H., Hoshi, M., Nomura, T., & Yokota, T. (1997). Zinc Deficiency affects the levels of endogenous gibberellins in Zea mays L. Plant and Cell Physiology, 38(9), 1087–1090.

    Article  CAS  Google Scholar 

  • Shahsavari, F., Khoshgoftarmanesh, A. H., Maibody, S. A. M. M., Shariatmadari, H., & Massah, A. (2019). The role of root plasma membrane ATPase and rhizosphere acidification in zinc uptake by two different Zn-deficiency tolerant wheat cultivars in response to zinc and histidine availability. Archives of Agronomy and Soil Science. https://doi.org/10.1080/03650340.2019.1572881

    Article  Google Scholar 

  • Sharma, P. N., Kumar, P., & Tewari, R. K. (2004). Early signs of oxidative stress in wheat plants subjected to zinc deficiency. Journal of Plant Nutrition, 27, 451–463.

    Article  CAS  Google Scholar 

  • Sinclair, S. A., & Krämer, U. (2012). The zinc homeostasis network of land plants. Biochimica Et Biophysica Acta, 1823, 1553–1567.

    Article  CAS  PubMed  Google Scholar 

  • Singh A. L. (1999). Mineral nutrition of groundnut. In Advances in Plant Physiology (Ed.), Hemantranjan, A., vol II. Scientific Publishers (India), Jodhpur, India, (pp. 161–200).

  • Singh, A. L. (2004). Mineral nutrient requirement, their disorders and remedies in Groundnut. In Groundnut Research in India (Eds.), Basu, M. S., Singh, N. B. National Research center for groundnut (ICAR), Junagadh, India, (pp. 137–159).

  • Singh, A. L., Mann, A. (2012). Recent advances in plant nutrition. In Proc Natl Seminar of Plant Physiology on “Physiological and molecular approaches for development of climatic resilient crops”, 12–14 Dec 2012, ANGRAU, Hyderabad, India, (pp. 6–22).

  • Singh, A. L., Basu, M. S., & Singh, N. B. (2003). Iron-chlorosis and its management in groundnut (p. 30). National Research Center for Groundnut (ICAR), Junagadh.

    Google Scholar 

  • Singh, A. L., Basu, M. S., Singh, N. B. (2004). Mineral disorders of groundnut. National Research center for groundnut (ICAR), Junagadh India, (p 85).

  • Singh, S., Prakash, P., & Singh, A. K. (2021). Salicylic acid and hydrogen peroxide improve antioxidant response and compatible Osmolytes in wheat (Triticum aestivum L.) under water deficit. Agric Res, 10, 175–186. https://doi.org/10.1007/s40003-020-00490-3

    Article  CAS  Google Scholar 

  • Singh, A. L., Bishi, S. K., Mahatama, M. K., Chaudhari, V., Thawait, L. K., Sushmita. (2017). High zinc density crop genotypes are a solution in alleviating zinc malnutrition in India Indian. Journal of Agricultural Biochemistry, 30(2), 107–114

  • Singh, A. L., Nakar, R. N., Chaudhari, V., Chakraborty, K., Kalariya, K. A., Gangadhara, K., Bishi, S. K., Sushmita, Patel, C. B. (2018). Photosynthetic efficiency among Indian peanut cultivars and influence of seasonal variation and zinc. Indian Journal of Plant Physiology, 23(2), 325–341.

  • Singh, A. L., & Chaudhari, V. (1991). Screening of groundnut varieties tolerant to iron chorosis. Indian Journal of Agricultural Sciences, 61(12), 925–927.

    CAS  Google Scholar 

  • Singh, A. L., & Chaudhari, V. (1992). Enzymatic studies in relation to micronutrient deficiencies and toxicities in groundnut. Plant Physiology and Biochemistry, 19, 107–109.

    Google Scholar 

  • Singh, A. L., & Chaudhari, V. (1993). Screening of groundnut germplasm collection and selection of genotypes tolerant of lime-induced iron-chlorosis. Journal of Agricultural Science, 121, 205–211.

    Article  CAS  Google Scholar 

  • Stein, A. (2010). Global impacts of human mineral malnutrition. Plant and Soil, 335, 133–154.

    Article  CAS  Google Scholar 

  • Stein, R. J., & Waters, B. M. (2011). Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots. Journal of Experimental Botany, 63, 1039–1055.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, B., Jing, Y., Chen, K., Song, L., Chen, F., & Zhang, L. (2007). Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays). Journal of Plant Physiology, 164, 536–543. https://doi.org/10.1016/j.jplph.2006.02.011

    Article  CAS  PubMed  Google Scholar 

  • Takagi, S., Nomoto, K., & Takemoto, S. (1984). Physiological aspects of mugineic acid, a possible phytosiderophore of gramineous plants. Journal of Plant Nutrition, 7, 469–477.

    Article  CAS  Google Scholar 

  • Tejada-Jiménez, M., Castro-Rodríguez, R., Kryvoruchko, I., Lucas, M. M., Udvardi, M., Imperial, J., et al. (2015). Medicago truncatula natural resistance-associated macrophage protein1 is required for iron uptake by rhizobia-infected nodule cells. Plant Physiology, 168, 258–272. https://doi.org/10.1104/pp.114.254672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tewari, R. K., Kumar, P., & Sharma, P. N. (2008). Morphology and physiology of zinc-stressed mulberry plants. Journal of Plant Nutrition and Soil Science, 171, 286–294.

    Article  CAS  Google Scholar 

  • Theocharis, C. (2014). Plant responses to iron, manganese, and zinc deficiency stress. In Emerging Technologies and Management of Crop Stress Tolerance, Academic Press. ISBN 9780128008768. https://doi.org/10.1016/B978-0-12-800876-8.00013-8, (pp. 293–311).

  • Tiong, J., McDonald, G., Genc, Y., Shirley, N., Langridge, P., & Huang, C. Y. (2015). Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root−to−shoot translocation of Zn in barley (Hordeum vulgare). New Phytologist, 207, 1097–1109. https://doi.org/10.1111/nph.13413

    Article  CAS  Google Scholar 

  • Tiwari, R. K., Lal, M. K., Kumar, R., Chourasia, K. N., Naga, K. C., Kumar, D., & Zinta, G. (2020). Mechanistic insights on melatonin mediated drought stress mitigation in plants. Physiologia Plantarum. https://doi.org/10.1111/ppl.13307

    Article  Google Scholar 

  • Tolay, I. (2021). The impact of different Zinc (Zn) levels on growth and nutrient uptake of Basil (Ocimum basilicum L.) grown under salinity stress. PLoS ONE, 16(2), e0246493. https://doi.org/10.1371/journal.pone.0246493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treeby, M., Marschner, H., & Romheld, V. (1989). Mobilization of iron and other micronutrient cations from a calcareous soil by plant borne, microbial and synthetic metal chelators. Plant and Soil, 114, 217–226.

    Article  CAS  Google Scholar 

  • Varotto, C., Maiwald, D., Pesaresi, P., Jahns, P., Salamini, F., & Leister, D. (2002). The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. The Plant Journal, 31(5), 589–599.

    Article  CAS  PubMed  Google Scholar 

  • Vert, G., Grotz, N., Dedaldechamp, F., Gaymard, F., Guerinot, M. L., Briat, J. F., & Curie, C. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell, 14(6), 1223–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, B., Wei, H., Xue, Z., & Zhang, W. H. (2017). Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa). Annals of Botany, 11, 945–956. https://doi.org/10.1093/aob/mcw250

    Article  CAS  Google Scholar 

  • Waters, B. M., & Grusak, M. A. (2008). Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia Landsberg erecta, Cape Verde Islands, and the mutant line ysl1ysl3. New Phytologist, 177, 389–405. https://doi.org/10.1111/j.1469-8137.2007.02288.x

    Article  CAS  Google Scholar 

  • White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets -iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182, 49–84.

    Article  CAS  Google Scholar 

  • WHO. (2017). The double burden of malnutrition: Policy brief. Available online at: http://www.who.int/nutrition/publications/doubleburdenmalnutrition-policybrief/en/.

  • Xia, X. J., Zhou, Y. H., Shi, K., Zhou, J., Foyer, C. H., & Yu, J. Q. (2015). Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, 66, 2839–2856. https://doi.org/10.1093/jxb/erv089

    Article  CAS  PubMed  Google Scholar 

  • Xiong, H., Kobayashi, T., Kakei, Y., Senoura, T., Nakazono, M., Takahashi, H., et al. (2012). AhNRAMP1 iron transporter is involved in iron acquisition in peanut. Journal of Experimental Botany, 63, 4437–4446. https://doi.org/10.1093/jxb/ers117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y., Wang, B., Yu, J., Ao, G., & Zhao, Q. (2010). Cloning and characterisation of ZmZLP1, a gene encoding an endoplasmic reticulum-localised zinc transporter in Zea mays. Functional Plant Biology, 37(3), 194–205.

    Article  CAS  Google Scholar 

  • Yuan, Y. X., Zhang, J., Wang, D. W., & Ling, H. Q. (2005). AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in Strategy I plants. Cell Research, 15, 613–621.

    Article  CAS  PubMed  Google Scholar 

  • Zaharieva, T. B., & Abadìa, J. (2003). Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots. Protoplasma, 221, 269–275.

    Article  CAS  PubMed  Google Scholar 

  • Zanin, L., Venuti, S., Zamboni, A., et al. (2017). Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions. BMC Genomics, 18, 154. https://doi.org/10.1186/s12864-016-3478-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Zhang, D., Sun, W., & Wang, T. (2019). The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. International Journal of Molecular Sciences, 20, 2424. https://doi.org/10.3390/ijms20102424

    Article  CAS  PubMed Central  Google Scholar 

  • Zhou, C., Liu, Z., Zhu, L., Ma, Z., Wang, J., & Zhu, J. (2016). Exogenous melatonin improves plant iron deficiency tolerance via increased accumulation of polyamine-mediated nitric oxide. International Journal of Molecular Sciences, 17, 1777. https://doi.org/10.3390/ijms17111777

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushmita Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Singh, A., Dey, R. et al. Insights into the physiological and molecular responses of plants to iron and zinc deficiency. Plant Physiol. Rep. 26, 626–635 (2021). https://doi.org/10.1007/s40502-021-00620-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-021-00620-1

Keywords

Navigation