Skip to main content

Zinc Transporter: Mechanism for Improving Zn Availability

  • Chapter
  • First Online:
Biofortification of Food Crops

Abstract

Zinc (Zn) is essentially required by plants for their growth and development. It plays very important role in various physiological procedures of plants such as photosynthesis, membrane integrity, protein synthesis, pollen formation, and immunity system. Although Zn is required by the plant in microconcentration, its bioavailable fraction in the soil is very low due to various soil factors. From soil solution it is absorbed by plants by root membrane transport mechanisms. After entering into plant system, it is neither oxidized nor reduced; but remains as divalent cation which has a great tendency to form tetrahedral complexes. From soil solution Zn reaches the plant root surface by three mechanisms, i.e., mass flow, diffusion, and root interception. Once it is absorbed, its transportation from roots to shoots occurs through the xylem and then easily retranslocated by phloem. This transport of ions and molecules from epidermal and cortical cell to xylem occurs through the symplastic or apoplastic route. The uptake of zinc into cells and its permeability into and out of intracellular organelles require some of the specific chemicals, generally known as transporter proteins. These proteins possess a quality to span the cell membranes which facilitate the movement of zinc. In recent years, a number of metal transporters have been identified in plants, including the P1B-ATPase family, zinc-regulated transporter (ZRT), iron-regulated transporter (IRT)-like protein (ZIP), natural resistance-associated macrophage protein (NRAMP) family, and cation diffusion facilitator (CDF) family. The bioavailable content of Zn in the soil can be increased using both chemical and biological approaches. Mineral fertilizers are considered a good source of Zn, but it gets fixed quickly on soil matrix, resulting in poor availability to plants. It is crucial to increase bioavailability of Zn to plants by solubilizing fixed Zn and/or by reducing fixation of the applied Zn fertilizers. This can be achieved either by using organic amendments or potential Zn solubilizing bioinoculants. Organic amendments improve bioavailability of Zn by increasing microbial biomass, which not only enhance the rate of decomposition of organic matter (source of Zn) but also enhance the bioavailability of indigenous Zn by lowering the soil pH and by releasing chelating agents. Similarly, exogenous application of some potential Zn solubilizing microflora has shown huge capability to improve bioavailable Zn content in the soil and its uptake by plant roots. This manuscript critically reviews about the Zn transporters and the role of rhizosphere microflora as a potential tool in enhancing its bioavailability to higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alloway BJ (2008) Zinc in soils and crop nutrition. International zinc Association and International Fertilizer Industry Association, Brussels/Paris, p 130

    Google Scholar 

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548

    Article  CAS  Google Scholar 

  • Assuncao AGL, Herrero E, Lin YF, Huettel B, Talukdar S, Smaczniak C, Immink RGH, Eldik MV, Fiers M, Schat H, Aarts MGM (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci U S A 107:10296–10301

    Article  CAS  Google Scholar 

  • Becher M, Talke IN, Krall L, Kramer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37(2):251–268

    Article  CAS  Google Scholar 

  • Biari A, Gholami A, Rahmani HA (2008) Growth promotion and enhanced nutrient uptake of maize (Zea mays L.) by application of plant growth promoting rhizobacteria in arid region of Iran. J Biol Sci 8:1015–1020

    Article  CAS  Google Scholar 

  • Blagodatsky SA, Richter O (1998) Microbial growth in soil and nitrogen turnover: a theoretical model considering the activity state of microorganisms. Soil Biol Biochem 30:1743–1755

    Article  CAS  Google Scholar 

  • Bloß B, Clemens S, Nies DH (2002) Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes. Planta 214:783–791

    Article  CAS  Google Scholar 

  • Burkert B, Robson A (1994) 65Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular – arbuscular mycorrhizal fungi in a root – free sandy soil. Soil Biol Biochem 26:1117–1124

    Article  Google Scholar 

  • Cakmak I (2011) Breeding, transformation and physiological strategies for the development of wheat with high zinc and iron grain concentration. In: Bonjean A (ed) The world wheat book. Lavoisier, Paris, New York

    Google Scholar 

  • Cakmak I, Gulut KY, Marschner H, Graham RD (1994) Effect of zinc and iron deficiency on phytosiderophore release in wheat genotypes differing in zinc efficiency. J Plant Nutr 17:1–17

    Article  CAS  Google Scholar 

  • Cakmak I, Sary N, Marschner H, Ekiz H, Kalaycy M, Yilmaz A, Braun HJ (1996) Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency. Plant Soil 180:183–189

    Article  CAS  Google Scholar 

  • Cakmak I, Torun B, Erenoglu B, Ozturk L, Marschner H, Kalayci M, Ekiz H, Yilmaz A (1998) Morphological and physiological differences in the response of cereals to zinc deficiency. Euphytica 100:349–357

    Article  CAS  Google Scholar 

  • Cakmak I, Pfeiffer W, Mcclafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20

    Article  CAS  Google Scholar 

  • Chen BD, Li XL, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50:839–846

    Article  CAS  Google Scholar 

  • Ciftci-Yilmaz S, Mittler R (2008) The zinc finger network of plants. Cell Mol Life Sci 65:1150–1160

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  Google Scholar 

  • Clemens S, Palmgren M, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  Google Scholar 

  • Colangelo E, Guerinot M (2004) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    Article  CAS  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    Article  CAS  Google Scholar 

  • Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR (2003) Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell 15:1131–1142

    Article  CAS  Google Scholar 

  • Drager DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Kramer U (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39:425–439

    Article  CAS  Google Scholar 

  • Eckhardt U, Mas Marques A, Buckhout TJ (2001) Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol Biol 45:437–448

    Article  CAS  Google Scholar 

  • Eide D, Guarente L (1992) Increased dosage of a transcriptional activator gene enhances iron-limited growth of Saccharomyces cerevisiae. J Gen Microbiol 138:347–354

    Article  CAS  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot M (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628

    Article  CAS  Google Scholar 

  • Englbrecht CC, Schoof H, Bohm S (2004) Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics 5:39–55

    Article  CAS  Google Scholar 

  • Eren E, Arguello J (2004) Arabidopsis HMA2, a divalent heavy metal-transporting PIB-Type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol 136:3712–3723

    Article  CAS  Google Scholar 

  • Fasim FN, Ahmed R, Parsons GM (2002) Solubilization of zinc salts by bacterium isolated by the air environment of tannery. FEMS Microbiol Lett 213:1–6

    Article  CAS  Google Scholar 

  • Gaither LA, Eide DJ (2000) Functional expression of the human hZIP2 zinc transporter. J Biol Chem 275(8):5560–5564

    Article  CAS  Google Scholar 

  • Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14:251–270

    Article  CAS  Google Scholar 

  • Gao X, Kuyper TW, Zou CF, Zhang HE (2007) Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant Soil 290:283–291

    Article  CAS  Google Scholar 

  • Gendre D, Czernic P, Conejero G, Pianelli K, Briat JF, Lebrun M, Mari S (2007) TcYSL3, a member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49:1–15

    Article  CAS  Google Scholar 

  • Giri B, Giang PH, Kumari R, Prasad R, Varma A (2005) Microbial diversity in soils. In: Buscot F, Varma S (eds) Micro-organisms in soils: roles in genesis and functions. Springer, Heidelberg, pp 195–212

    Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378

    Article  CAS  Google Scholar 

  • Grass G, Wong MD, Rosen BP, Smith RL, Rensing C (2002) ZupT is a Zn(II) uptake system in Escherichia coli. J Bacteriol 184:864–866

    Article  CAS  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci U S A 95:7220–7224

    Article  CAS  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  CAS  Google Scholar 

  • Gurmani AR, Khan SU, Andaleep R, Waseem K, Khan A (2012) Soil application of zinc improves growth and yield of tomato. Int J Agric Biol 14:91–96

    CAS  Google Scholar 

  • Gustin JL, Zanis MJ, Salt DE (2011) Structure and evolution of the plant cation diffusion facilitator family of ion transporters. BMC Evol Biol 11:76

    Article  CAS  Google Scholar 

  • Hacisalihoglu G, Kochian LV (2003) How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol 159(2):341–350

    Article  CAS  Google Scholar 

  • Hacisalihoglu G, Hart JJ, Kochian LV (2001) High-and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiol 125:456–463

    Article  CAS  Google Scholar 

  • Hacisalihoglu G, Hart JJ, Wang Y, Cakmak I, Kochian LV (2003) Zinc efficiency is correlated with enhanced expression and activity of Cu/Zn superoxide dismutase and carbonic anhydrase in wheat. Plant Physiol 131:595–602

    Article  CAS  Google Scholar 

  • Hajiboland R, Amirazad F (2010) Growth, photosynthesis and antioxidant defense system in Zn-deficient red cabbage plants. Plant Soil Environ 56:209–217

    CAS  Google Scholar 

  • Hassan Z, Aarts M (2011) Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environ Exp Bot 72:53–63

    Article  CAS  Google Scholar 

  • Havlin JL, Tisdale SL, Nelson WL, Beaton JD (2014) Soil fertility and nutrient management: an introduction to nutrient management, 8th edn. Pearson, Upper Saddle River, p 505

    Google Scholar 

  • Hodgson JF (1963) Chemistry of the micronutrient elements in soils. Adv Agron 15:119–159

    Article  Google Scholar 

  • Hoffland E, Wei C, Wissuwa M (2006) Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant Soil 283(1):155–162

    Article  CAS  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    Article  CAS  Google Scholar 

  • Ikram A, Mahmud AW, Ghani MN, Ibrahim MT, Zainal AB (1992) Field nursery inoculation of Hevea brasiliensis Muell. Arg. seedling rootstock with vesicular–arbuscular mycorrhizal (VAM) fungi. Plant Soil 145:231–236

    Article  Google Scholar 

  • Imran M, Arshad M, Khalid A, Kanwal S, Crowley DE (2014) Perspectives of rhizosphere microflora for improving Zn bioavailability and acquisition by higher plants. Int J Agric Biol 16:653–662

    CAS  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2003) Long–distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agron 23:481–488

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Shaharoona B, Mahmood T (2009) Plant growth promoting rhizobacteria and sustainable agriculture. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin/Heidelberg, pp 133–160

    Chapter  Google Scholar 

  • Kim YY, Choi H, Segami S, Cho HT, Martinoia E, Maeshima M, Lee Y (2009) AtHMA1 contributes to detoxification cation of excess Zn(II) in Arabidopsis. Plant J 58:737–753

    Article  CAS  Google Scholar 

  • Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150:257–271

    Article  CAS  Google Scholar 

  • Kochian LV (1993) Zinc absorption from hydroponic solutions by plant roots. In: Robson AD (ed) Zinc in soils and plants. Kluwer, Dordrecht, pp 45–57

    Chapter  Google Scholar 

  • Kochian LV (2000) Molecular physiology of mineral nutrient acquisition, transport, and utilization. Biochem Mol Biol Plants 20:1204–1249

    Google Scholar 

  • Koide RT, Kabir Z (2000) Extra radical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol 148:511–517

    Article  CAS  Google Scholar 

  • Kupper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311

    Article  CAS  Google Scholar 

  • Lasat MM, Kochian LV (2000) Physiology of Zn hyperaccumulation in Thlaspi caerulescens. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press/LLC, Boca Raton, pp 159–169

    Google Scholar 

  • Lasat MM, Baker AJ, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol 112:1715–1722

    CAS  Google Scholar 

  • Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt – stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    Article  CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth – promoting rhizobacteria. Anton Leeuw 86:1–25

    Article  CAS  Google Scholar 

  • Luo ZB, He XJ, Chen L, Tang L, Gao S, Chen F (2010) Effects of zinc on growth and antioxidant responses in Jatropha curcas seedlings. Int J Agric Biol 12:119–124

    CAS  Google Scholar 

  • MacDiarmid CW, Gaither LA, Eide D (2000) Zinc transporter that regulate vacuolar Zinc storage in Saccharomyces cerevisiae. EMBO J 19(12):2845–2855

    Article  CAS  Google Scholar 

  • Mandal B, Hazra GC, Pal AK (1988) Transformation of zinc in soils under submerged condition and its relation with zinc nutrition of rice. Plant Soil 106:121–126

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Marschner H (1997) Mineral nutrition of higher plants. Academic, San Diego, p 889

    Google Scholar 

  • Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141

    Article  CAS  Google Scholar 

  • McCall KA, Huang C, Carol AF (2000) Function and mechanism of zinc metalloenzymes. J Nutr 130:1437–1446

    Google Scholar 

  • Moreau S, Thomson RM, Kaiser BN, Trevaskis B, Guerinot ML, Udvardi MK, Puppo A, Day DA (2002) GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. J Biol Chem 277:4738–4746

    Article  CAS  Google Scholar 

  • Obrador A, Novillo J, Alvarez JM (2003) Mobility and availability to plants of two zinc sources applied to a calcareous soil. Soil Sci Soc Am J 67:564–572

    Article  CAS  Google Scholar 

  • Ortas I, Ortakçi D, Kaya Z, Cinar A, Onelge N (2002) Mycorrhizal dependency of sour orange in relation to phosphorus and zinc nutrition. J Plant Nutr 25:1263–1279

    Article  CAS  Google Scholar 

  • Palmer C, Guerinot M (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    Article  CAS  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960

    Article  CAS  Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci U S A 98:9995–10000

    Article  CAS  Google Scholar 

  • Reid RJ, Brookes JD, Tester MA, Smith FA (1996) The mechanism of zinc uptake in plants. Planta 198:39–45

    Article  CAS  Google Scholar 

  • Rengel Z, Wheal MS (1997) Kinetic parameters of zinc uptake by wheat are affected by the herbicide chlorsulfuron. J Exp Bot 48:935–941

    Article  CAS  Google Scholar 

  • Robson AD (1994) Zinc in soils and plants. Springer, New York

    Google Scholar 

  • Ryan MH, Angus JF (2003) Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P uptake or yield. Plant Soil 250:225–239

    Article  CAS  Google Scholar 

  • Ryan MH, McCully ME, Huang CX (2007) Relative amounts of soluble and insoluble forms of phosphorus and other elements in intraradical hyphae and arbuscules of arbuscular mycorrhizas. Funct Plant Biol 34:457–464

    Article  CAS  Google Scholar 

  • Sadaghiani MR, Barin M, Jalili F (2008) The effect of PGPR inoculation on the growth of wheat. International meeting on soil fertility land management and agroclimatology, Turkey, pp 891–898

    Google Scholar 

  • Saravanan VS, Subramoniam SR, Raj SA (2004) Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates. Brazil J Microbiol 35:121–125

    Article  CAS  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  CAS  Google Scholar 

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    Article  CAS  Google Scholar 

  • Simine CDD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fertil Soils 28(1):87–94

    Article  Google Scholar 

  • Smith S, Read DJ (1997) Mycorrhizal symbiosis. Academic, London, pp 11–33

    Book  Google Scholar 

  • Song WY, Choi KS, Kim Y, Geisler M, Park J, Vincenzetti V, Schellenberg M, Kim SH, Lim YP, Noh EW, Lee Y, Martinoia E (2010) Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22:2237–2252

    Article  CAS  Google Scholar 

  • Subramanian KS, Tenshia V, Jayalakshmi K, Ramachandran V (2009) Role of arbuscular mycorrhizal fungus (Glomus intraradices)–(fungus aided) in zinc nutrition of maize. Agric Biotechnol Sustain Dev 1:29–38

    CAS  Google Scholar 

  • Swaminathan K, Verma BC (1979) Response of three crop species to vesicular arbuscularmycorrhizal infection on Zinc deficient Indian soils. New Phytol 114:1–38

    Google Scholar 

  • Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57:399–411

    Article  CAS  Google Scholar 

  • Tarafdar JC, Marschner H (1994) Efficiency of VAM hyphae in utilization of organic phosphorus by wheat plants. Soil Sci Plant Nutr 40:593–600

    Article  CAS  Google Scholar 

  • Tariq M, Hameed S, Malik KA, Hafeez FY (2007) Plant root associated bacteria for zinc mobilization in rice. Pak J Bot 39:245–253

    Google Scholar 

  • Tarkalson DD, Jolley VD, Robbins CW, Terry RE (1998) Mycorrhizal colonization and nutrition of wheat and sweet corn grown in manure‐treated and untreated topsoil and subsoil. J Plant Nutr 21(9):1985–1999. doi:10.1080/01904169809365538

    Article  CAS  Google Scholar 

  • Tejada M, Hernandez MT, Garcia C (2006) Application of two organic amendments on soil restoration: effects on the soil biological properties. J Environ Qual 35:1010–1017

    Article  CAS  Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Feng J (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci U S A 107:16500–16505

    Article  CAS  Google Scholar 

  • Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Clemencia Zambrano M, Kaskie M, Ebbs S, Kochian LV, Feng J (2011) Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J 66:852–862

    Article  CAS  Google Scholar 

  • van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Themaat EVL, Koornneef M, Arts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 42:1127–1147

    Article  CAS  Google Scholar 

  • van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JAC, Hooykaas PJJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Article  Google Scholar 

  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  CAS  Google Scholar 

  • Wang P, Bi S, Ma L, Han W (2006) Aluminum tolerance of two wheat cultivars (Brevor and Atlas66) in relation to their rhizosphere pH and organic acids exuded from roots. J Agric Food Chem 54:10033–10039

    Article  CAS  Google Scholar 

  • Waters B, Sankaran R (2011) Moving micronutrients from the soil to the seeds: genes and physiological processes from a biofortification perspective. Plant Sci 180:562–574

    Article  CAS  Google Scholar 

  • Welch RM (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–82

    Article  CAS  Google Scholar 

  • White PJ, Whiting SN, Baker AJM, Broadley MR (2002) Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens? New Phytol 153:201–207

    Article  CAS  Google Scholar 

  • Whiting SN, Desouza M, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulator by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  CAS  Google Scholar 

  • Willams DJ, Hall KB (2000) Experimental and computational studies of the G (UUCG)C RNA tetraloop. J Mol Biol 297(5):1045–1061

    Article  CAS  Google Scholar 

  • Wu SC, Cheung KC, Luo YM (2006) Wong effects of inoculation of plant growth promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    Article  CAS  Google Scholar 

  • Wu QS, Li GH, Zou YN (2011) Roles of arbuscular mycorrhizal fungi on growth and nutrient acquisition of peach (Prunus persica L. Batsch) seedlings. J Anim Plant Sci 21:746–750

    CAS  Google Scholar 

  • Zhang FS, Romheld V, Marschner H (1991) Diurnal rhythm of release of phytosiderophores and uptake rate of zinc in iron-deficient wheat. J Plant Nutr Soil Sci 37:671–678

    Article  CAS  Google Scholar 

  • Zhao H, Eide D (1996a) The ZRT2 gene encodes the low-affinity zinc transporter in Saccharomyces cerevisiae. J Biol Chem 271:23203–23210

    Article  CAS  Google Scholar 

  • Zhao H, Eide DJ (1996b) The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci U S A 93:2454–2458

    Article  CAS  Google Scholar 

  • Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyper-accumulator Thlaspi caerulescens. J Exp Bot 53:535–543

    Article  CAS  Google Scholar 

  • Zia MS, Aslam M, Baig MB, Ashraf A (1999) Fertility issues and fertilizer management in rice–wheat system: a review. Quart Sci Vis 5:59–73

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Kumar, L., Meena, N.L., Singh, U. (2016). Zinc Transporter: Mechanism for Improving Zn Availability. In: Singh, U., Praharaj, C., Singh, S., Singh, N. (eds) Biofortification of Food Crops. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2716-8_11

Download citation

Publish with us

Policies and ethics