Skip to main content
Log in

Defense system in chickpea genotypes differing in tolerance to Helicoverpa armigera infestation

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Antioxidative enzymes, non enzymic antioxidants and signaling molecules were compared in leaves and podwall of ten chickpea genotypes namely ICC 506, ICCV 10, ICC 10393, 5282, RSG 963, GL 25016, GL 26054, ICCL 86111, ICC 3137 and L 550 after Helicoverpa armigera infestation. Two chickpea genotypes (ICC 3137 and L 550) were found to be susceptible and rest of eight genotypes were found to be resistant on the basis of leaf and pod damage due to to Helicoverpa armigera infestation. The activities of defensive enzymes like, peroxidase (POD), ascorbate peroxidase(APX) and glutathione reductase (GR); content of nitric oxide (NO), 2,2-diphenyl-1-picryl hydrazyl (DPPH), ferric reducing antioxidant power(FRAP), glycine betaine (GB), total phenols (TP) and proline were higher in leaves and pod wall of resistant genotypes than susceptible genotypes. Genotype 5282 was found to be the most resistant having lower leaf and pod damage and it had higher POD, nitric oxide, DPPH, FRAP, total phenols and proline content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.

    Article  CAS  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216.

    Article  CAS  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Benzie, I. F. F., & Strain, J. J. (1996). The ferric Reducing ability of plasma (FRAP) as a measure of antioxidant power. The FRAP assay. Analytical Biochemistry, 239, 70–76.

    Article  CAS  PubMed  Google Scholar 

  • Bhonwong, A., Stout, M. J., Attajarusit, J., & Tantasawat, P. (2009). Defensive role of tomato polyphenol oxidase against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). Journal of Chemical Ecology, 35, 28–38.

    Article  CAS  PubMed  Google Scholar 

  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200.

    Article  CAS  Google Scholar 

  • Bostock, R. M . (2005). Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol, 43, 545–580.

    Article  CAS  PubMed  Google Scholar 

  • Chance, B., & Maehly, A. C. (1955). Assay of catalase and peroxidases. Methods in Enzymology, 2, 764–775.

    Article  Google Scholar 

  • Esterbaur, H., & Grill, D. (1978). Seasonal variation of glutathione and glutathione reductase in needles of Picea abies. Plant Physiology, 61, 119–121.

    Article  Google Scholar 

  • FAOSTAT (2014) Food and Agriculture Organisation of the United Nations (FAO) Statistical Databases, http://faostat.fao.org.

  • Gharari, Z., Nejad, R. K., Band, R. S., Najafi, F., Nabiuni, M., & Irian, S. (2014). The role of Mn-SOD and Fe SOD genes in the response to low temperature in chs mutants of Arabidopsis. Turkish Journal of Botany, 38, 80–88.

    Article  CAS  Google Scholar 

  • Gill, R. S., Gupta, A. K., Taggar, G. K., & Taggar, M. S. (2010). Role of oxidative enzymes in plant defenses against insect herbivory. Acta Phytopathologica et Entomologica Hungarica, 45, 277–290.

    Article  CAS  Google Scholar 

  • Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant and Soil, 70, 303–307.

    Article  CAS  Google Scholar 

  • Hanley, M. E., Lamont, B. B., Fairbanks, M. M., & Rafferty, C. M. (2007). Plant structural traits and their role in antiherbivore defense. Perspect Plant Ecol, 8, 157–178.

    Article  Google Scholar 

  • He, J., Chen, F., Chen, S., Lv, G., Deng, Y., & Fang, W. (2011). Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. Journal of Plant Physiology, 168, 687–693.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, R., Gupta, A. K., & Taggar, G. K. (2015). Induced resistance by oxidative shifts in pigeonpea (Cajanus cajan L.) following Helicoverpa armigera (Hubner) herbivory. Pest Management Science, 71, 770–782.

    Article  CAS  PubMed  Google Scholar 

  • Kooner, B. S., & Cheema, H. K. (2006). Evaluation of pigeon pea genotypes for resistance to pod borer complex. Indian Journal of Crop Science, 1, 194–196.

    Google Scholar 

  • Labudda, M., & Azam, F. M. S. (2014). Glutathione-dependent responses of plants to drought: a review. Acta Societatis Botanicorum Poloniae, 83, 3–12.

    Article  CAS  Google Scholar 

  • Li, Y., Jiang, B., Zhang, T., Mu, Z., & Liu, J. (2008). Antioxidant and free radical scanenging activities of chickpea protein hydrolysate (CPH). Food Chemistry, 106, 444–450.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. I., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  PubMed  Google Scholar 

  • Marcocci, L., & Packer, L. (1994). Antioxidant action of Ginkgo biloba extract EGB 761. Methods in Enzymology, 234, 462–475.

    Article  CAS  PubMed  Google Scholar 

  • Marklund, S., & Marklund, G. (1974). Involvement of superoxide anion radical in the autoxidation of pyragallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 169–174.

    Article  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., & Breusegem, F. V. (2004). Reactive oxygen gene network of plants. Trends in Plant Sciences, 9, 490–498.

    Article  CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell and Physiology, 28, 131–140.

    CAS  Google Scholar 

  • Narayanamma, L. V., Sharma, H. C., Vijay, P. M., Gowda, C. L. L., & Sriramulu, M. (2013). Expression of resistance to the pod borer Helicoverpa armigera (Lepidoptera: noctuidae) in relation to high performance liquid chromatography fingerprints of leaf exudates of chickpea. International Journal of Tropical Insect Science, 33, 276–282.

    Article  Google Scholar 

  • Parde, V. D., Sharma, H. C., & Kachole, M. S. (2012). Protease inhibitors in wild relatives of pigeonpea against the cotton bollworm/legume pod borer Helicoverpa armigera. American Journal of Plant Sciences, 3, 627–635.

    Article  CAS  Google Scholar 

  • Razem, F. A., & Bernards, M. A. (2003). Reactive oxygen species production in association with suberization: evidence foe an NADPH-dependent oxidase. Journal of Experimental Botany, 54, 935–941.

    Article  CAS  PubMed  Google Scholar 

  • Romero-Puertas, M. C., Corpas, F. J., Sandalio, L. M., Leterrier, M. Rodriguez-, Serrano, M., Rio, L. A., et al. (2006). Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytology, 170, 43–52.

    Article  CAS  Google Scholar 

  • Sarwar, M. K. S., Ullh, I., Rahman, M. U., Ashraf, M. Y., & Zafar, Y. (2006). Glycine betaine accumulation and its relation to yield and yield components in cotton genotypes grown under water deficient condition. Pakistan Journal of Botany, 38, 1449–1456.

    Google Scholar 

  • Scheler, C., Duner, J., & Astier, J. (2013). Nitric oxide and reactive oxygen species in plant biotic interactions. Current Opinion in Plant Biology, 16, 534–539.

    Article  CAS  PubMed  Google Scholar 

  • Shannon, L. M., Kay, E., & Lew, J. Y. (1966). Peroxidase isozymes from horseradish roots I. Isolation and physical properties. Journal of Biological Chemistry, 241, 2166–2172.

    CAS  PubMed  Google Scholar 

  • Sharma, H. C., Sujana, G., & Rao, D. M. (2009). Morphological and chemical components of resistance to pod borer Helicoverpa armigera in wild relatives of pigeonpea. Arthropod Plant Interactions, 3, 151–161.

    Article  Google Scholar 

  • Sharma, H.C., War, A.R., Pathania, M., Sharma, S.S., Akbar, S.M.D., & Munghate, R.S. (2016). Elavated CO2 influences host plant defense response in chickpea against Helicoverpa armigera. Arthopod Plant Interactions, 10, 171–181.

    Article  Google Scholar 

  • Srivastava, S., Zheng, Y., Kudapa, H., Jagadeeswaran, G., Hivrale, V., Varshney, R. K., et al. (2015). High throughput sequencing of small RNA component of leaves and inflorescence revealed conserved and novel miRNAs as well as phasiRNA loci in chickpea. Plant Science, 235, 46–57.

    Article  CAS  PubMed  Google Scholar 

  • Swain, T., & Hillis, W. E. (1959). Phenolic constituents of Prunus domestica. The qualitative analysis of phenolic constituents. Journal of Science Food and Agriculture, 10, 63–68.

    Article  CAS  Google Scholar 

  • Verma, K. K., Singh, M., Gupta, R. K., & Verma, C. L. (2014). Photosynthetic gas exchange, chlorophyll fluorescence, antioxidant enzymes and growth responses of Jatropha curcas during soil flooding. Turkish Journal of Botany, 38, 130–140.

    Article  CAS  Google Scholar 

  • Zhu-Salzman, K., Luthe, D. S., & Felton, G. W. (2008). Arthropod-induced proteins: broad spectrum defenses against multiple herbivores. Plant Physiology, 146, 852–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Pulses section, Department of Plant Breeding and Genetics, Punjab Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satvir Kaur Grewal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Grewal, S.K., Singh, R. et al. Defense system in chickpea genotypes differing in tolerance to Helicoverpa armigera infestation. Ind J Plant Physiol. 22, 324–331 (2017). https://doi.org/10.1007/s40502-017-0310-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0310-3

Keywords

Navigation