Skip to main content

Advertisement

Log in

Application of Technetium 99 Metastable Radioactive Nanosystems: Nanoparticles, Liposomes, and Nanoemulsion for Biomedical Application

  • Nanodrugs (ATY Lau, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

The uses of nanomedicines, as polymeric nanoparticles, nanoemulsion, or liposomes, are increasingly in vogue in the last few years. These nanosystems have several biomedical applications, and their potentiality overpass the regular drug-based system. Recently, most of these nanosystems have been used as theranostic agent, by grafting radioactive materials especially 99mTc, which has imaging properties. Herein, it is provided a milestone in this research field, revising the production and application of radioactive nanosystems coupled to the 99mTc for both diagnosis and therapy. The mechanisms of action and nanosystem action were made explicit in order to make this review a constant source of consultation. From the collected data, it is clear the need of rapid translation for human use, real gain and social relevance, since most of the radioactive nanosystems have been used for tumor early diagnosis and/or therapy. Overall, the use of nanosystem coupled with 99mTc is increasing and the future of modern medicine, especially the nuclear medicine, relies on the correct use of these nanosystems and on the development of new ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sgouros G, Goldenberg DM. Radiopharmaceutical therapy in the era of precision medicine. Eur J Cancer. 2014;50:2360–3.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Haller S, Ametamey SM, Schibli R, Muller C. Investigation of the chick embryo as a potential alternative to the mouse for evaluation of radiopharmaceuticals. Nucl Med Biol. 2015;42:226.

    Article  CAS  PubMed  Google Scholar 

  3. Herlem G, Angoue O, Gharbi T, Boulahdour H. Electrochemistry of Pertechnetate on Ultramicroelectrode: a New Quality Control for Radiopharmaceuticals Manufactured at Hospital in Nuclear Medicine. Electrochem Commun. 2015;51:76–80.

    Article  CAS  Google Scholar 

  4. Wasserman MAV, Orlando MMC, Zubillaga M, Sousa-Batista AJ, Al-Qahtani M. Santos-Oliveira R Nanoradiopharmaceuticals for Nanomedicine: Building the Future. Recent Patents on Nanomedicine. 2015;4:90–4. https://doi.org/10.2174/1877912305666150101235646.

    Article  CAS  Google Scholar 

  5. Santos-Oliveira R o O, Santos R. Nanoradiopharmaceuticals: Is that the Future for Nuclear Medicine? Curr Radiopharm. 2011;4:140–3. https://doi.org/10.2174/1874471011104020140.

    Article  CAS  PubMed  Google Scholar 

  6. Ting G, Chang CH, Wang HE. Cancer nanotargeted radiopharmaceuticals for tumor imaging and therapy. Anticancer Res. 2009;29:4107 https://www.ncbi.nlm.nih.gov/pubmed/19846958.

    CAS  PubMed  Google Scholar 

  7. Belli V, Guarnieri D, Biondi M, Della Sala F, Netti PA. Dynamics of nanoparticle diffusion and uptake in three-dimensional cell cultures. Biointerfaces. 2017;149:7–15 https://www.ncbi.nlm.nih.gov/pubmed/27710850.

    Article  CAS  PubMed  Google Scholar 

  8. Brkić Ahmed L, Milić M, Pongrac IM, Marjanović AM, Mlinarić H, Pavičić I, et al. Impact of surface functionalization on the uptake mechanism and toxicity effects of silver nanoparticles in HepG2 cells. Food Chem Toxicol. 2017;107:349.

    Article  CAS  PubMed  Google Scholar 

  9. Dreifuss T, Ben-Gal TS, Shamalov K, Weiss A, Jacob A, Sadan T, et al. Uptake mechanism of metabolic-targeted gold nanoparticles. Nanomedicine. 2018;13:1535–49 https://www.ncbi.nlm.nih.gov/m/pubmed/30028251/.

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Monteiro-Riviere NA. Mechanisms of cell uptake, inflammatory potential and protein corona effects with gold nanoparticles. Nanomedicine. 2016;11:3185–203 https://www.ncbi.nlm.nih.gov/pubmed/27882809.

    Article  CAS  PubMed  Google Scholar 

  11. Reifarth M, Hoeppener S, Schubert US. Uptake and Intracellular Fate of Engineered Nanoparticles in Mammalian Cells: Capabilities and Limitations of Transmission Electron Microscopy—Polymer Based Nanoparticles. Adv Mater. 2018;30:1703704. https://doi.org/10.1007/s40495-019-00190-9 https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201703704.

    Article  Google Scholar 

  12. Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J Control Release. 2016;240:332–48 https://www.ncbi.nlm.nih.gov/pubmed/26774224.

    Article  CAS  PubMed  Google Scholar 

  13. Kettler K, Veltman K, van de Meent D, van Wezel A, Hendriks AJ. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem. 2014;33:481–92 https://www.ncbi.nlm.nih.gov/pubmed/24273100.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou G, Zhang J, Pan C, Liu N, Wang Z, Zhang J. Enhanced Uptake of Fe3O4 Nanoparticles by Intestinal Epithelial Cells in a State of Inflammation. Molecules. 2017;22:1240 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152196/.

    Article  CAS  PubMed Central  Google Scholar 

  15. Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, et al. Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells. Environ Health Perspect. 2005;113:1555–60 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1310918/.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cooper DL, Conder CM, Harirforoosh S. Nanoparticles in drug delivery: mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity. (https://www.ncbi.nlm.nih.gov/pubmed/25054316).

  17. Zhang S, Gao H, Bao G. Physical Principles of Nanoparticle Cellular Endocytosis. ACS Nano. 2015;9:8655–71 https://www.ncbi.nlm.nih.gov/pubmed/26256227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A. Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44:410–22 https://www.ncbi.nlm.nih.gov/pubmed/25229833.

    Article  CAS  PubMed  Google Scholar 

  19. Hill TK, Mohs AM. Image-guided tumor surgery: will there be a role for fluorescent nanoparticles? Nanomed Nanobiotechnol. 2016;8:498–511 https://www.ncbi.nlm.nih.gov/pubmed/26585556.

    Article  CAS  Google Scholar 

  20. Karaman DŞ, Sarparanta MP, Rosenholm JM, Airaksinen AJ. Nonisotropic Self-Assembly of Nanoparticles: From Compact Packing to Functional Aggregates. Adv Mater. 2018;30:1703651 https://www.ncbi.nlm.nih.gov/pubmed/29740924.

    Article  CAS  Google Scholar 

  21. Portilho FL, Helal-Neto E, Cabezas SS, Pinto SR, Dos Santos SN, Pozzo L, et al. Magnetic core mesoporous silica nanoparticles doped with dacarbazine and labelled with 99mTc for early and differential detection of metastatic melanoma by single photon emission computed tomography. Artif Cells Nanomed Biotechnol. 2018;46:1–8 https://www.tandfonline.com/doi/full/10.1080/21691401.2018.1443941.

    Article  CAS  Google Scholar 

  22. Oliveira R, Santos D, Ferreira D, Coelho P, Veiga F. Preparações radiofarmacêuticas e suas aplicações. Braz J Pharm Sci. 2006;42:151 http://www.scielo.br/pdf/rbcf/v42n2/a02v42n2.pdf.

    CAS  Google Scholar 

  23. Salvadori PA. Radiopharmaceuticals: Drug Development and Regulatory Issues. Curr Radiopharm. 2008;1:7.

    Article  CAS  Google Scholar 

  24. Albernaz M, Ospina CA, Rossi AA, Santos-Oliveira R. Radiolabelled nanohydroxyapatite with 99mTc: perspectives to nanoradiopharmaceuticals construction. Artif Cells Nanomed Biotechnol. 2014;42:88 https://www.tandfonline.com/doi/full/10.3109/21691401.2013.785954.

    Article  CAS  Google Scholar 

  25. Suriyanto, Ng EYK, Kumar SD. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. Biomed Eng Online. 2017;16:36 https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0327-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gamboa MML, Roesch HRM, Lemos VPA, Rocha BO, Santos-Oliveira R. Obligations, precautions and pending issues in regulatory development for radiopharmaceuticals in Brazil. Braz J Pharm Sci. 2014;50:285 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-82502014000200285&lng=en&tlng=en.

    Article  Google Scholar 

  27. Hirsjärvi S, Sancey L, Dufort S, Belloche C, Vanpouille-Box C, Garcion E, et al. Effect of particle size on the biodistribution of lipid nanocapsules: comparison between nuclear and fluorescence imaging and counting. Int J Pharm. 2013a;453:594–600.

    Article  CAS  PubMed  Google Scholar 

  28. Holland JP, Giansiracusa JH, Bell SG, Wong LL, Dilworth JR. In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals. Phys Med Biol. 2009;54:2103 https://www.ncbi.nlm.nih.gov/pubmed/19287086.

    Article  CAS  PubMed  Google Scholar 

  29. Horn D, Rieger J. Organic Nanoparticles in the Aqueous Phase-Theory, Experiment, and Use. Angew Chem Int Ed Eng. 2001;40:4330 https://www.ncbi.nlm.nih.gov/pubmed/12404417.

    Article  CAS  Google Scholar 

  30. Minelli C, Lowe SB, Stevens MM. Engineering nanocomposite materials for cancer therapy. Small. 2010;6:2336 https://www.ncbi.nlm.nih.gov/pubmed/20878632.

    Article  CAS  PubMed  Google Scholar 

  31. Daull P, Lallemand F, Garrigue JS. Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery. J Pharm Pharmacol. 2014;66(4):531–41 https://www.ncbi.nlm.nih.gov/pubmed/24001405.

    Article  CAS  PubMed  Google Scholar 

  32. Bouchemal K, Briançon S, Perrier E, Fessi H. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm. 2004;280:241–51.

    Article  CAS  PubMed  Google Scholar 

  33. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. Current Opinion in Colloid and Interface Science. Nano-Emulsions. 2005;10:3–4, 102-110. https://doi.org/10.1016/j.cocis.2005.06.004.

    Article  CAS  Google Scholar 

  34. Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv Colloid Interf Sci. 2004;108–109:303–18 https://www.ncbi.nlm.nih.gov/pubmed/15072948.

    Article  CAS  Google Scholar 

  35. Anton N, Benoit JP, Saulnier P. J. Design and production of nanoparticles formulated from nano-emulsion templates-a review. Control Release. 2008;128:185–99 https://www.ncbi.nlm.nih.gov/pubmed/18374443.

    Article  CAS  Google Scholar 

  36. McClements DJ. Nanoemulsion-based oral delivery systems for lipophilic bioactive components: nutraceuticals and pharmaceuticals. Ther Deliv. 2013;4(7):841–57 https://www.ncbi.nlm.nih.gov/pubmed/23883127.

    Article  CAS  PubMed  Google Scholar 

  37. Lefebvre G, Riou J, Bastiat G, Roger E, Frombach K, Gimel JC, et al. Spontaneous nano-emulsification: Process optimization and modeling for the prediction of the nanoemulsion's size and polydispersity. Int J Pharm. 2017;14:220–2 https://www.ncbi.nlm.nih.gov/pubmed/29038063.

    Article  CAS  Google Scholar 

  38. Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, et al. Nanoparticles--an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm. 2007;66:159 https://www.ncbi.nlm.nih.gov/pubmed/17169540.

    Article  CAS  PubMed  Google Scholar 

  39. Schaffazick SR, Pohlmann AR, Dalla-Costa T, Guterres SS. Freeze-drying polymeric colloidal suspensions: nanocapsules, nanospheres and naodispersion. A comparative study. Eur J Pharm Biopharm. 2003;56:501 https://www.sciencedirect.com/science/article/abs/pii/S0939641103001395?via%3Dihub.

    Article  CAS  PubMed  Google Scholar 

  40. Oh EJ, Park K, Kim KS, Kim J, Yang JA, Kong JH, et al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release. 2010;141(1):2–12. https://doi.org/10.1016/j.jconrel.2009.09.010 Epub 2009 Sep 13.

    Article  CAS  PubMed  Google Scholar 

  41. Lemoine D, Francois C, Kedzierewicz F, Preat V, Hoffman M, Maincent P. Stability study of nanoparticles of poly(epsilon-caprolactone), poly(D,Llactide) and poly(D,L-lactide-co-glycolide). Biomaterials. 1996;17:2191.

    Article  CAS  PubMed  Google Scholar 

  42. Benassi JC, Laus R, Geremias R, Lima PL, Menezes CTB, Laranjeira MC, et al. Evaluation of remediation of coal mining wastewater by chitosan microspheres using biomarkers. Arch Environ Contam Toxicol. 2006;51:633–40. https://doi.org/10.1007/s40495-019-00190-9.

    Article  CAS  PubMed  Google Scholar 

  43. Wang T, Petrenko VA, Torchilin VP. Paclitaxel-Loaded Polymeric Micelles Modified with MCF-7 Cell-Specific Phage Protein: Enhanced Binding to Target Cancer Cells and Increased Cytotoxicity. Mol Pharm. 2010;7:1007 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914606/.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hafeli UO, Sweeney SM, Beresford BA, Humm JL, Macklis RM. Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. Nucl Med Biol. 1995;22:147.

    Article  CAS  PubMed  Google Scholar 

  45. De Patricio BFC, Albernaz MS, Sarcinelli MA, De Carvalho SM, Santos-Oliveira R o O, Santos R, et al. Development of Novel Nanoparticle for Bone Cancer. J Biomed Nanotechnol. 2014;10:1242–8. https://doi.org/10.1166/jbn.2014.1812.

    Article  CAS  PubMed  Google Scholar 

  46. Ozgur A, Lambrecht FY, Ocakoglu K, Gunduz C, Yucebas M. Synthesis and biological evaluation of radiolabeled photosensitizer linked bovine serum albumin nanoparticles as a tumor imaging agent. Int J Pharm. 2012;422:472 https://www.sciencedirect.com/science/article/pii/S0378517311010519?via%3Dihub.

    Article  CAS  PubMed  Google Scholar 

  47. Hamoudeh M, Salim H, Barbos D, Paunoiu C, Fessi H. Preparation and characterization of radioactive dirhenium decacarbonyl-loaded PLLA nanoparticles for radionuclide intra-tumoral therapy. Eur J Pharm Biopharm. 2007;67:597–611.

    Article  CAS  PubMed  Google Scholar 

  48. Yukuyama MN, Ghisleni DD, Pinto TJ, Bou-Chacra NA. Nanoemulsion: process selection and application in cosmetics--a review. Int J Cosmet Sci. 2016;38:13–24 https://www.ncbi.nlm.nih.gov/pubmed/26171789.

    Article  CAS  PubMed  Google Scholar 

  49. Basheer HS, Noordim MI, Ghareeb MM. Characterizatiuon of microemulsions prepared using isopropyl palmitate with various surfactants and cosurfactants. Trop J Pharm Res. 2013;12:305–10.

    Google Scholar 

  50. Odriozola-Serrano I, Oms-Oliu G, Martín-Belloso O. Nanoemulsion-based delivery systems to improve functionality of lipophilic components. Front Nutr. 2014;5(1):24 https://www.ncbi.nlm.nih.gov/pubmed/25988126.

    Google Scholar 

  51. Tadros TF. Principles and Applications. Weinheim: Wiley-VCH; 2005. p. 634. hardcover (https://core.ac.uk/download/pdf/12863758.pdf)

    Google Scholar 

  52. Ho HO, Hsiao CC, Sheu MT. Preparation of microemulsion using polyglicerin fatty acid esters as surfactant for the delivery of proteins drugs. J Pharm Sci. 1996;85(2):138–43.

    Article  CAS  PubMed  Google Scholar 

  53. Hafner A, Lovrić J, Lakoš GP, Pepić I. Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine. 2014;19(9):1005–23 https://www.ncbi.nlm.nih.gov/pubmed/24600222.

    Google Scholar 

  54. Sasikumar A, Kamalasanan K. Nanomedicine for prostate cancer using nanoemulsion: A review. J Control Release. 2017;260:111–23.

    Article  CAS  PubMed  Google Scholar 

  55. Patel RB, Thakore SD, Patel MR. Recent Survey on Patents of Nanoemulsions. Curr Drug Deliv. 2016;13(6):857–81 https://www.ncbi.nlm.nih.gov/pubmed/26324230.

    Article  CAS  PubMed  Google Scholar 

  56. Fang RH, Jiang Y, Fang JC, Zhang L. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials. 2017;128:69–83 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417338/.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vanpouille-Box C, Lacoeuille F, Belloche C, Lepareur N, Lemaire L, LeJeune JJ, et al. Tumor eradication in rat glioma and bypass of immunosuppressive barriers using internal radiation with (188)Re-lipid nanocapsules. Biomaterials. 2011;32:6781 https://www.ncbi.nlm.nih.gov/pubmed/21705077.

    Article  CAS  PubMed  Google Scholar 

  58. Vonarbourg A, Passirani C, Saulnier P, Simard P, Leroux JC, Benoit JP. Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater Res. 2006;A78:620 https://www.ncbi.nlm.nih.gov/pubmed/16779767.

    Article  CAS  Google Scholar 

  59. Delattre J, Couvreur P, Puisieux F, Philippot JR, Shuber F. Les liposomes — Aspects technologiques, biologiques et pharmacologiques. pp 266. Editions INSERM, 1993. 310 F ISBN 2‐85206‐891‐5 (https://onlinelibrary.wiley.com/doi/abs/10.1016/0307-4412%2895%2990653-3).

  60. Mertins O. Desenvolvimento e Caracterização de Nanovesículas Lipossômicas Compósitas de Fosfatidilcolina da Lecitina de Soja e Quitosana. Dissertação de Mestrado. UFRGS: Porto Alegre; 2004.

  61. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:238 https://www.sciencedirect.com/science/article/pii/S0022283665800936.

    Article  CAS  Google Scholar 

  62. Feng T, Wei Y, Lee RJ, Zhao L. Liposomal curcumin and its application in cancer. Int J Nanomedicine. 2017;21(12):6027–44 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5573051/.

    Article  Google Scholar 

  63. Eloy JO, Petrilli R, Trevizan LNF, Chorilli M. Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids Surf B: Biointerfaces. 2017;5159:454–67 https://www.sciencedirect.com/science/article/pii/S0927776514005001.

    Article  CAS  Google Scholar 

  64. Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomedicine. 2017;17:5087–108 https://www.ncbi.nlm.nih.gov/pubmed/28761343.

    Article  Google Scholar 

  65. Moen MD, Lyseng-Williamson KA, Scott LJ. Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs. 2009;69(3):361–92 https://www.ncbi.nlm.nih.gov/pubmed/19275278.

    Article  CAS  PubMed  Google Scholar 

  66. Allen TM. Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol Sci. 1994;15(7):215–20 https://www.ncbi.nlm.nih.gov/pubmed/7940982.

    Article  CAS  PubMed  Google Scholar 

  67. Weiner AL. Liposomes for protein delivery: selecting manufacture and development processes. Immunomethods. 1994;4(3):201–9 https://www.ncbi.nlm.nih.gov/pubmed/7820450.

    Article  CAS  PubMed  Google Scholar 

  68. Helbok A, Rangger C, von Guggenberg E, Saba-Lepek M, Radolf T, Thurner G, et al. Targeting properties of peptide-modified radiolabeled liposomal nanoparticles. Nanomedicine. 2012;8:112 https://www.ncbi.nlm.nih.gov/pubmed/21645641.

    Article  CAS  PubMed  Google Scholar 

  69. Phillips WT, Bao A, Brenner AJ, Goins BA. Imgae guided interventional therapy for cancer with radiotherapeutics nanoparticles. Adv Drug Deliv Rev. 2014;76:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jestin E, Mougin-Degraef M, Faivre-Chauvet A, Remaud-Le Saec P, Hindre F, Benoit JP, et al. Radiolabeling and targeting of lipidic nanocapsules for applications in radioimmunotherapy. Q J Nucl Med Mol Imaging. 2007;51(1):51–60 https://www.ncbi.nlm.nih.gov/m/pubmed/17372573/.

    CAS  PubMed  Google Scholar 

  71. Allard E, Hindre F, Passirani C, Lemaire L, Lepareur N, Noiret N, et al. (188)Re-loaded lipid nanocapsules as a promising radiopharmaceutical carrier for internal radiotherapy of malignant gliomas. Eur J Nucl Med Mol Imaging. 2008;35:1838 https://www.researchgate.net/publication/28376335_188Reloaded_lipid_nanocapsules_as_a_promising_radiopharmaceutical_carrier_for_internal_radiotherapy_of_malignant_gliomas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pardeike J, Hommoss A, Muller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366:170 https://www.ncbi.nlm.nih.gov/pubmed/18992314.

    Article  CAS  PubMed  Google Scholar 

  73. Cahouet A, Denizot B, Hindre F, Passirani C, Heurtault B, Moreau M, et al. Biodistribution of dual radiolabeled lipidic nanocapsules in the rat using scintigraphy and gamma counting. Int J Pharm. 2002;242:367 https://www.ncbi.nlm.nih.gov/pubmed/12176281.

    Article  CAS  PubMed  Google Scholar 

  74. Ballot S, Noiret N, Hindre F, Denizot B, Garin E, Rajerison H, et al. 99mTc/188Re-labelled lipid nanocapsules as promising radiotracers for imaging and therapy: formulation and biodistribution. Eur J Nucl Med Mol Imaging. 2006;33:602–7. https://doi.org/10.1007/s00259-005-0007-0 10.1007/s40495-019-00190-9.

    Article  CAS  PubMed  Google Scholar 

  75. Lakouas DK, Huglo D, Mordon S. Vermandel M Nuclear medicine for photodynamic therapy in cancer: planning, monitoring and nuclear PDT. Photodiagn Photodyn Ther. 2017;18:236–43. https://doi.org/10.1016/j.pdpdt.2017.03.002.

    Article  CAS  Google Scholar 

  76. Yang SG, Chang JE, Shin B, Park S, Na K, Shim CK. 99mTc-hemotoporphyrin linked alubumin nanoparticles for lung cancer targeted photodynamics therapy and imaging. J Mater Chem. 2010;20:9042.

    Article  CAS  Google Scholar 

  77. Hamoudeh M, Fessi H, Mehier H, Faraj AA, Canet-Soulas E. Dirhenium decacarbonyl-loaded PLLA nanoparticles: Influence of neutron irradiation and preliminary in vivo administration by the TMT technique. Int J Pharm. 2008;348:125.

    Article  CAS  PubMed  Google Scholar 

  78. Weber C, Kreuter J, Langer K. Desolvation process and surface characteristics of HSA-nanoparticles. Int J Pharm. 2000;196:197 https://www.ncbi.nlm.nih.gov/pubmed/10699717.

    Article  CAS  PubMed  Google Scholar 

  79. Kommalapati A, Tella SH, Esquivel MA, Correa R. Evaluation and management of skeletal disease in câncer care. Crit Rev Oncol Hematol. 2017;8:1040–8428 https://www.ncbi.nlm.nih.gov/pubmed/29032892.

    Google Scholar 

  80. Hirsjärvi S, Dufort S, Gravier J, Texier I, Yan Q, Bibette J, et al. Influence of size, surface coating and fine chemical composition on the in vitro reactivity and in vivo biodistribution of lipid nanocapsules versus lipid nanoemulsions in cancer models. Nanomedicine. 2013b;9:375–87.

    Article  CAS  PubMed  Google Scholar 

  81. Hirsjarvi S, Belloche C, Hindre F, Garcion E, Benoit JP. Tumour targeting of lipid nanocapsules grafted with cRGD peptides. Eur J Pharm Biopharm. 2014;87:152 https://www.hal.inserm.fr/inserm-00923988/document.

    Article  CAS  PubMed  Google Scholar 

  82. Richard JK. Technetium radiopharmaceutical chemistry. CENP. 2006;12:3 https://pharmacyce.unm.edu/nuclear_program/freelessonfiles/Vol12Lesson3.pdf.

  83. Cerqueira-Coutinho CS, Santos-Oliveira R, Santos EP, Mansur CE. Development of a photoprotective and antioxidant nanoemulsion containing chitosan as an agent for improving skin retention. Eng Life Sci. 2015;1:1 https://onlinelibrary.wiley.com/doi/abs/10.1002/elsc.201400154.

    Google Scholar 

  84. Ahmad J, Mir SR, Kohli K, Chuttani K, Mishra AK, Panda AK, et al. Solid-nanoemulsion preconcentrate for oral delivery of paclitaxel: formulation design, biodistribution, and γ scintigraphy imaging. Biomed Res Int. 2014;3 https://www.ncbi.nlm.nih.gov/pubmed/25114933.

  85. Cerqueira-Coutinho CS, De Campo VE, Rossi AL, Veiga VF, Holandino C, Freitas ZM, et al. Comparing in vivo biodistribution with radiolabeling and Franz cell permeation assay to validate the efficacy of both methodologies in the evaluation of nanoemulsions: a safety approach. Nanotechnology. 2016;8:27 https://www.ncbi.nlm.nih.gov/pubmed/26605997/.

    Google Scholar 

  86. Mota Ade C, de Freitas ZM, Ricci Júnior E, Dellamora-Ortiz GM, Santos-Oliveira R, Ozzetti RA, et al. In vivo and in vitro evaluation of octyl methoxycinnamate liposomes. Int J Nanomedicine. 2013:4689–701 https://www.ncbi.nlm.nih.gov/pubmed/24376350.

  87. Fragogeorgi EA, Savina IN, Tsotakos T, Efthimiadou E, Xanthopoulos S, Palamaris L, et al. Comparative in vitro stability and scintigraphic imaging for trafficking and tumor targeting of a directly and a novel 99mTc(I)(CO)3 labeled liposome. Int J Pharm. 2014;465:333 https://www.ncbi.nlm.nih.gov/pubmed/24583207.

    Article  CAS  PubMed  Google Scholar 

  88. Petersen AL, Hansen AE, Gabizon A, Andresen TL. Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev. 2012;64:1417 https://www.ncbi.nlm.nih.gov/pubmed/22982406.

    Article  CAS  PubMed  Google Scholar 

  89. Rouquette M, Lepetre-Mouelhi S, Dufrançais O, Yang X, Mougin J, Pieters G, et al. Squalene-adenosine nanoparticles: ligands of adenosine receptors or adenosine prodrug? J Pharmacol Exp Ther. 2019;369:144–51.

    Article  CAS  PubMed  Google Scholar 

  90. Cędrowska E, et al. Functionalized TiO2 nanoparticles labelled with 225Ac for targeted alpha radionuclide therapy. Journal of nanoparticle research: an interdisciplinary forum for nanoscale science and technology. 2018;20(3):83.

    Article  CAS  Google Scholar 

  91. Aranda-Barradas ME, et al. Development of a Parenteral Formulation of NTS-Polyplex Nanoparticles for Clinical Purpose. Pharmaceutics. 2018;10:1.

    Article  CAS  Google Scholar 

  92. Holzwarth U, Ojea Jimenez I, Calzolai L. A random walk approach to estimate the confinement of α-particle emitters in nanoparticles for targeted radionuclide therapy. EJNMMI radiopharmacy and chemistry. 2018;3(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Li W, et al. Therapy of cervical cancer using 131I-labeled nanoparticles. J Int Med Res. 2018;46(6):2359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yuan H, et al. Heat-induced radiolabeling and fluorescence labeling of Feraheme nanoparticles for PET/SPECT imaging and flow cytometry. Nat Protoc. 2018;13(2):392–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Garg P, Hazra DK. Conjugation of Antibodies with Radiogold Nanoparticles, as an Effector Targeting Agents in Radiobioconjugate Cancer Therapy: Optimized Labeling and Biodistribution Results. Indian journal of nuclear medicine: IJNM: the official journal of the Society of Nuclear Medicine, India. 2017;32(4):296–303.

    Google Scholar 

  96. Song L, et al. Accumulation of 111In-Labelled EGF-Au-PEG Nanoparticles in EGFR-Positive Tumours is Enhanced by Coadministration of Targeting Ligand. Nanotheranostics. 2017;1(3):232–43.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kim J, et al. In-Situ Formation of Holmium Oxide in Pores of Mesoporous Carbon Nanoparticles as Substrates for Neutron-Activatable Radiotherapeutics. Carbon. 2017;117:92–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Evertsson M, et al. Combined Magnetomotive ultrasound, PET/CT, and MR imaging of 68Ga-labelled superparamagnetic iron oxide nanoparticles in rat sentinel lymph nodes in vivo. Sci Rep. 2017;7(1):4824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Keinänen O, et al. Pretargeted PET Imaging of trans-Cyclooctene-Modified Porous Silicon Nanoparticles. ACS omega. 2017;2(1):62–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang H, Sheng W. 131I-Traced PLGA-Lipid Nanoparticles as Drug Delivery Carriers for the Targeted Chemotherapeutic Treatment of Melanoma. Nanoscale Res Lett. 2017;12(1):365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Walsh AA. Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation and potential use in nanomedicine. Journal of nanoparticle research: an interdisciplinary forum for nanoscale science and technology. 2017;19(4):152.

    Article  CAS  Google Scholar 

  102. Beldman TJ, Senders ML, Alaarg A, Pérez-Medina C, Tang J, Zhao Y, et al. Kluza EHyaluronan Nanoparticles Selectively Target Plaque-Associated Macrophages and Improve Plaque Stability in Atherosclerosis. ACS Nano. 2017;11(6):5785–99. https://doi.org/10.1021/acsnano.7b01385 Epub 2017 May 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li N, et al. A generic 89Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography. Int J Nanomedicine. 2017;12:3281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee SB, et al. Visualization of Macrophage Recruitment to Inflammation Lesions using Highly Sensitive and Stable Radionuclide-Embedded Gold. Nanoparticles as a Nuclear Bio-Imaging Platform. Theranostics. 2017;7(4):926–34. https://doi.org/10.1007/s40495-019-00190-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Satterlee AB, et al. A dosimetric model for the heterogeneous delivery of radioactive nanoparticles in vivo: a feasibility study. Radiat Oncol. 2017;12(1):54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yin Y, et al. Isotope Tracers To Study the Environmental Fate and Bioaccumulation of Metal-Containing Engineered Nanoparticles: Techniques and Applications. Chem Rev. 2017;117(5):4462–87.

    Article  CAS  PubMed  Google Scholar 

  107. Buckley A, et al. Slow lung clearance and limited translocation of four sizes of inhaled iridium nanoparticles. Part Fibre Toxicol. 2017;14(1):5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pham TN, et al. Tunable and noncytotoxic PET/SPECT-MRI multimodality imaging probes using colloidally stable ligand-free superparamagnetic iron oxide nanoparticles. Int J Nanomedicine. 2017;12:899–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhao Y, et al. Near-Infrared Quantum Dot and 89Zr Dual-Labeled Nanoparticles for in Vivo Cerenkov Imaging. Bioconjug Chem. 2017;28(2):600–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tian C, et al. Plasmonic Nanoparticles with Quantitatively Controlled Bioconjugation for Photoacoustic Imaging of Live Cancer Cells. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2016;3(12):1600237.

    Google Scholar 

  111. Vipin AK, et al. Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium. Sci Rep. 2016;6:37009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. He Z, Zhang X, Huang J, Wu Y, Huang X, Chen J, et al. Immune activity and biodistribution of polypeptide K237 and folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles radiolabeled with 99mTc. Oncotarget. 2016;7(47):76635–46. https://doi.org/10.18632/oncotarget.12850.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Yu D, et al. Development and Characterization of VEGF165-Chitosan Nanoparticles for the Treatment of Radiation-Induced Skin Injury in Rats. Mar drugs. 2016;14(10):11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cho J, et al. Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers. Med Phys. 2016;43(8):4775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yamaguchi H, et al. Dual-Labeled Near-Infrared/(99m) Tc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells. Int J Mol Sci. 2016;17(7).

  116. Black KCL, et al. In vivo fate tracking of degradable nanoparticles for lung gene transfer using PET and Ĉerenkov imaging. Biomaterials. 2016;98:53–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Alizadeh M, Qaradaghi V. Diagnosis and Treatment of Small Bowel Cancers Using Radioactive Gold Nanoparticles and Wireless Fluorescence Capsule Endoscopy. Journal of biomedical physics & engineering. 2016;6(1):13–20.

    CAS  Google Scholar 

  118. Song L, Falzone N, Vallis KA. EGF-coated gold nanoparticles provide an efficient nano-scale delivery system for the molecular radiotherapy of EGFR-positive cancer. Int J Radiat Biol. 2016;92(11):716–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wu H, et al. Interactions between Silicon Oxide Nanoparticles (SONPs) and U(VI) Contaminations: Effects of pH, Temperature and Natural Organic Matters. PLoS One. 2016;11(3):e0149632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yook S, et al. Intratumorally Injected 177Lu-Labeled Gold Nanoparticles: Gold Nanoseed Brachytherapy with Application for Neoadjuvant Treatment of Locally Advanced Breast Cancer. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 2016;57(6):936–42.

    Article  CAS  Google Scholar 

  121. Konduru NV, et al. Surface modification of zinc oxide nanoparticles with amorphous silica alters their fate in the circulation. Nanotoxicology. 2016;10(6):720–7.

    Article  CAS  PubMed  Google Scholar 

  122. Shao X, et al. Quantitatively Understanding Cellular Uptake of Gold Nanoparticles via Radioactivity Analysis. J Nanosci Nanotechnol. 2015;15(5):3834–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Al Faraj A, et al. Sodium-22-radiolabeled silica nanoparticles as new radiotracer for biomedical applications: in vivo positron emission tomography imaging, biodistribution, and biocompatibility. Int J Nanomedicine. 2015;10:6293–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Konduru NV, et al. Silica coating influences the corona and biokinetics of cerium oxide nanoparticles. Part Fibre Toxicol. 2015;12:31, 12 out.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liu Y, et al. Enzyme-Controlled Intracellular Self-Assembly of (18)F Nanoparticles for Enhanced MicroPET Imaging of Tumor. Theranostics. 2015;5(10):1058–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Abou DS, Pickett JE, Thorek DLJ. Nuclear molecular imaging with nanoparticles: radiochemistry, applications and translation. Br J Radiol. 2015;88(1054):20150185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schilz JR, et al. Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability. J Vis Exp: JoVE. 2015;100:e52715.

    Google Scholar 

  128. Pérez-Medina C, et al. PET Imaging of Tumor-Associated Macrophages with 89Z r-Labeled High-Density Lipoprotein Nanoparticles. J Nucl Med: official publication, Society of Nuclear Medicine. 2015;56(8):1272–7.

    Article  Google Scholar 

  129. Chieh J-J, et al. Dual-imaging model of SQUID biosusceptometry for locating tumors targeted using magnetic nanoparticles. J Nanobiotechnol. 2015;13:11.

    Article  CAS  Google Scholar 

  130. Su N, et al. Iodine-125-labeled cRGD-gold nanoparticles as tumor-targeted radiosensitizer and imaging agent. Nanoscale Res Lett. 2015;10:160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Boros E, et al. Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles. Chem Sci. 2015;6(1):225–36.

    Article  CAS  PubMed  Google Scholar 

  132. Bogdanov AA, et al. Gold nanoparticles stabilized with MPEG-grafted poly(l-lysine): in vitro and in vivo evaluation of a potential theranostic agent. Bioconjug Chem. 2015;26(1):39–50.

    Article  CAS  PubMed  Google Scholar 

  133. Jang S-C, et al. Removal of Radioactive Cesium Using Prussian Blue Magnetic Nanoparticles. Nanomaterials (Basel, Switzerland). 2014;4(4):894–901.

    Article  CAS  Google Scholar 

  134. Bots P, et al. Formation of Stable Uranium(VI) Colloidal Nanoparticles in Conditions Relevant to Radioactive Waste Disposal. Langmuir. 2014;30(48):14396–405.

    Article  CAS  PubMed  Google Scholar 

  135. Axiak-Bechtel SM, et al. Gum arabic-coated radioactive gold nanoparticles cause no short-term local or systemic toxicity in the clinically relevant canine model of prostate cancer. Int J Nanomedicine. 2014;9:5001–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Konduru NV, et al. Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles. Part Fibre Toxicol. 2014;11:44 10.1007/s40495-019-00190-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cui X, et al. Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging. Biomaterials. 2014;35(22):5840–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Black KCL, et al. Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano. 2014;8(5):4385–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Naik S, Patel D, Chuttani K, Mishra AK, Misra A. In vitro mechanistic of cell death and in vivo performance evaluation of RGD grafted pegylated docetaxel liposome in breast cancer. Nanomedicine. 2012;8:951–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Santos-Oliveira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nanodrugs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos-Oliveira, R. Application of Technetium 99 Metastable Radioactive Nanosystems: Nanoparticles, Liposomes, and Nanoemulsion for Biomedical Application. Curr Pharmacol Rep 5, 281–302 (2019). https://doi.org/10.1007/s40495-019-00190-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-019-00190-9

Keywords

Navigation