Skip to main content
Log in

Effects on machinability of cryogenic treatment applied to carbide tools in the milling of Ti6AI4V with optimization via the Taguchi method and grey relational analysis

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The effects of processing parameters and cryogenic treatment on cutting force and surface roughness in the milling of Ti6AI4V alloy were investigated in this study. The effects of cutting speed, feed rate, and the treatments applied to the tools were evaluated through the Taguchi method and grey relational analysis. Control factors in the experiments performed under dry cutting conditions were based on two different cutting speeds and three different feed rates and tool properties. It was observed that the cutting force values decreased with increased cutting speed and significantly increased parallel to the feed rate. In terms of surface roughness, they were observed to change based on cutting parameters. Whereas the most effective parameter for cutting force was feed rate, with a 81.9% contribution, for surface roughness it was cutting speed, with a 48.8% contribution. Optimum machining conditions were determined as A1B3C2 following the grey relational analysis performed for both responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bermingham MJ, Kirsch J, Sun S, Palanisamy S, Dargusch MS (2011) New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V. Int J Mach Tool Manuf 51:500–511. https://doi.org/10.1016/j.ijmachtools.2011.02.009

    Article  Google Scholar 

  2. Pramanik A (2014) Problems and solutions in machining of titanium alloys. Int J Adv Manuf Technol 70:919–928. https://doi.org/10.1007/s00170-013-5326-x

    Article  Google Scholar 

  3. Ezugwu E (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. Int J Mach Tools Manuf 45:1353–1367. https://doi.org/10.1016/j.ijmachtools.2005.02.003

    Article  Google Scholar 

  4. Vosough M, Schultheiss F, Agmell M, Ståhl JE (2013) A method for identification of geometrical tool changes during machining of titanium alloy Ti6Al4V. Int J Adv Manuf Technol 67:339–348. https://doi.org/10.1007/s00170-012-4487-3

    Article  Google Scholar 

  5. Dandekar CR, Shin YC, Barnes J (2010) Machinability improvement of titanium alloy (Ti-6Al-4 V) via LAM and hybrid machining. Int J Mach Tool Manuf 50:174–182. https://doi.org/10.1016/j.ijmachtools.2009.10.013

    Article  Google Scholar 

  6. Wang B, Liu Z (2018) Influences of tool structure, tool material and tool wear on machined surface integrity during turning and milling of titanium and nickel alloys: a review. Int J Adv Manuf Technol 98:1925–1975. https://doi.org/10.1007/s00170-018-2314-1

    Article  Google Scholar 

  7. Wu H, Zhang S (2015) Effects of cutting conditions on the milling process of titanium alloy Ti6Al4V. Int J Adv Manuf Technol 77:2235–2240. https://doi.org/10.1007/s00170-014-6645-2

    Article  Google Scholar 

  8. Zhu Z, Sun J, Li J, Huang P (2016) Investigation on the influence of tool wear upon chip morphology in end milling titanium alloy Ti6Al4V. Int J Adv Manuf Technol 83:1477–1485. https://doi.org/10.1007/s00170-015-7690-1

    Article  Google Scholar 

  9. Özel T, Sima M, Srivastava AK, Kaftanoglu B (2010) Investigations on the effects of multi-layered coated inserts in machining Ti-6Al- 4Valloy with experiments and finite element simulations. CIRPAnn Technol 59:77–82. https://doi.org/10.1016/j.cirp.2010.03.055

    Article  Google Scholar 

  10. Sun FJ, Qu SG, Pan YX, Li XQ, Li FL (2015) Effects of cutting parameters on dry machining Ti-6Al-4V alloy with ultra-hard tools. Int J Adv Manuf Technol 79:351–360. https://doi.org/10.1007/s00170-014-6717-3

    Article  Google Scholar 

  11. Li G, Rahim MZ, Ding S, Sun S (2016) Performance and wear analysis of polycrystalline diamond (PCD) tools manufactured with different methods in turning titanium alloy Ti-6Al-4V. Int J Adv Manuf Technol 85:825–841. https://doi.org/10.1007/s00170-015-7949-6

    Article  Google Scholar 

  12. Amin AN, Ismail AF, Khairusshima MN (2007) Effectiveness of uncoated WC–Co and PCD inserts in end milling of titanium alloy Ti-6Al-4V. J Mater Process Technol 192:147–158. https://doi.org/10.1016/j.jmatprotec.2007.04.095

    Article  Google Scholar 

  13. Thelning KE (1984) Steel and its heat treatment. Butterworths, London

    Google Scholar 

  14. Das D, Dutta AK, Toppo V, Ray KK (2007) The effect of cryogenic treatment on the carbide precipitation and tribological behavior of D2 steel. Mater Manuf Process 22:474–480. https://doi.org/10.1080/10426910701235934

    Article  Google Scholar 

  15. Das D, Dutta AK, Ray KK (2009) Inconsistent wear behavior of cryotreated tool steels: role of mode and mechanism. Mater Sci Technol 25:1249–1257. https://doi.org/10.1179/174328408X374685

    Article  Google Scholar 

  16. Das D, Sarkar R, Dutta AK, Ray KK (2010) Influence of sub-zero treatments on fracture toughness of AISI D2 steel. Mater Sci Eng A 528:589–603. https://doi.org/10.1016/j.msea.2010.09.057

    Article  Google Scholar 

  17. Das D, Dutta AK, Ray KK (2008) On the enhancement of wear resistance of tool steels by cryogenic treatment. Philos Mag Lett 88:801–811. https://doi.org/10.1080/09500830802380788

    Article  Google Scholar 

  18. Das D, Dutta AK, Ray KK (2009) Influence of varied cryotreatment on the wear behavior of AISI D2 steel. Wear 266:297–309. https://doi.org/10.1016/j.wear.2008.07.001

    Article  Google Scholar 

  19. Das D, Dutta AK, Ray KK (2009) Dutta Influence of temperature of sub-zero treatments on the wear behaviour of die steel. Wear 267:1361–1370. https://doi.org/10.1016/j.wear.2008.11.029

    Article  Google Scholar 

  20. Yong AYL, Seah KHW, Rahman M (2007) Performance of cryogenically treated tungsten carbide tools in milling operations. Int J Adv Manuf Technol 32:638–643. https://doi.org/10.1007/s00170-005-0379-0

    Article  Google Scholar 

  21. Ekici E (2015) Milling behavior of hadfield steel with cryogenically treated tungsten carbide inserts. Mater Test 57:11–12. https://doi.org/10.3139/120.110811

    Article  Google Scholar 

  22. Armendia M, Garay A, Iriarte LM, Arrazola PJ (2010) Comparison of the machinabilities of Ti6Al4V and TIMETAL® 54M using uncoated WC–Co tools. J Mater Process Technol 210:197–203. https://doi.org/10.1016/j.jmatprotec.2009.08.026

    Article  Google Scholar 

  23. Sivalingam V, Sun J, Yang B, Liu K, Raju R (2018) Machining performance and tool wear analysis on cryogenic treated insert during end milling of Ti-6Al-4V alloy. J Manuf Process 36:188–196. https://doi.org/10.1016/j.jmapro.2018.10.010

    Article  Google Scholar 

  24. Celik ON, Sert., Gasan H, Ulutan M, (2018) Effect of cryogenic treatment on the microstructure and the wear behavior of WC-Co end mills for machining of Ti6Al4V titanium alloy. Int J Adv Manuf Technol 95:2989–2999. https://doi.org/10.1007/s00170-017-1444-1

    Article  Google Scholar 

  25. Kursuncu B, Caliskan H, Guven SY, Panjan P (2018) Improvement of cutting performance of carbide cutting tools in milling of the Inconel 718 superalloy using multilayer nanocomposite hard coating and cryogenic heat treatment. Int J Adv Manuf Technol 97:467–479. https://doi.org/10.1007/s00170-018-1931-z

    Article  Google Scholar 

  26. Lance AE (1994) Quality by design taguchi methods TM and US industry. Irwin professional publishing and ASI Press, Sidney

    Google Scholar 

  27. Montgomery DC (1997) Design and analysis of experiments. John Wiley, New York

    MATH  Google Scholar 

  28. Kuram E, Ozcelik B (2013) Multi-objective optimization using taguchi based grey relational analysis for micro-milling of Al7075 material with ball nose end mill. Measurement 46:1849–1864. https://doi.org/10.1016/j.measurement.2013.02.002

    Article  Google Scholar 

  29. Durairaj M, Sudharsun D, Swamynathan N (2013) Analysis of process parameters in wire EDM with stainless steel using single objective Taguchi method and multi objective grey relational grade. Procedia Eng 64:868–877. https://doi.org/10.1016/j.proeng.2013.09.163

    Article  Google Scholar 

  30. Sarıkaya M, Güllü A (2015) Multiresponse optimization of minimum quantity lubrication parameter using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25. J Clean Prod 91:347–357. https://doi.org/10.1016/j.jclepro.2014.12.020

    Article  Google Scholar 

  31. Mozammel M, Asaduzzaman R, Md FT, Munish KG, Md JH, Anjan G (2018) Multi-objective optimization of chip-tool interaction parameters using grey-taguchi method in MQL-assisted turning. Measurement 129(156):166. https://doi.org/10.1016/j.measurement.2018.07.014

    Article  Google Scholar 

  32. Ramesh S, Viswanathan R, Ambika S (2016) Measurement and optimization of surface roughness and tool wear via grey relational analysis, TOPSIS and RSA techniques. Measurement 78:63–72. https://doi.org/10.1016/j.measurement.2015.09.036

    Article  Google Scholar 

  33. Gupta M, Kumar S (2013) Multi-objective optimization of cutting parameters in turning using grey relational analysis. Int J Ind Eng Comput 4:547–558. https://doi.org/10.5267/j.ijiec.2013.06.001

    Article  Google Scholar 

  34. Rajeswari B, Amirthagadeswaran KS (2017) Experimental investigation of machinability characteristics and multiresponse optimization of end milling in aluminium composites using RSM based grey relational analysis. Measurement 105:78–86. https://doi.org/10.1016/j.measurement.2017.04.014

    Article  Google Scholar 

  35. Yan J, Li L (2013) Multi-objective optimization of milling parameters–the trade-offs between energy, production rate and cutting quality. J Clean Prod 52:462–471. https://doi.org/10.1016/j.jclepro.2013.02.030

    Article  Google Scholar 

  36. Canbolat AS, Bademlioglu AH, Arslanoglu N, Kaynakli O (2019) Performance optimization of absorption refrigeration systems usingtaguchi, anova and grey relational analysis methods. J Clean Prod 229:874–885. https://doi.org/10.1016/j.jclepro.2019.05.020

    Article  Google Scholar 

  37. Panda S, Mishra D, Biswal BB (2011) Determination of optimum parameters with multi-performance characteristics in laser drilling—A grey relational analysis approach. Int J Adv Manuf Technol 54:957–967. https://doi.org/10.1007/s00170-010-2985-8

    Article  Google Scholar 

  38. Bademlioglu AH, Canbolat AS, Kaynakli O (2020) Multi-objective optimization of parameters affecting organic rankine cycle performance characteristics with taguchi-grey relational analysis. Renew Sustain Energy Rev 117:109483. https://doi.org/10.1016/j.rser.2019.109483

    Article  Google Scholar 

  39. Çalışkan H, Küçükköse M (2015) The effect of aCN/TiAlN coating on tool wear, cutting force, surface finish and chip morphology in face milling of Ti6Al4V superalloy. Int J Refract Met Hard Mat 50:304–312. https://doi.org/10.1016/j.ijrmhm.2015.02.012

    Article  Google Scholar 

  40. Safari H, Sharif S, Izman S, Jafari H, Kurniawan D (2014) Cutting force and surface roughness characterization in cryogenic high-speed end milling of Ti–6Al-4V ELI. Mater Manuf Process 29:350–356. https://doi.org/10.1080/10426914.2013.872257

    Article  Google Scholar 

  41. Korkut I, Donertas MA (2007) The influence of feed rate and cutting speed on the cutting force, surface roughness and tool-chip contact length during face milling. Mater Des 28:308–312. https://doi.org/10.1016/j.matdes.2005.06.002

    Article  Google Scholar 

  42. Sun S, Brandt M, Dargusch MS (2009) Characteristics of cutting forces and chip formation in machining of titanium alloys. Int J Mach Tools Manuf 49:561–568. https://doi.org/10.1016/j.ijmachtools.2009.02.008

    Article  Google Scholar 

  43. Khan A, Maity K (2017) Comparative study of some machinability aspects in turning of pure titanium with untreated and cryogenically treated carbide inserts. J Manuf Process 28:272–284. https://doi.org/10.1016/j.jmapro.2017.05.018

    Article  Google Scholar 

  44. Strano M, Albertelli P, Chiappini E, Tirelli S (2015) Wear behaviour of PVD coated and cryogenically treated tools for Ti-6Al-4 V turning. Int J Mater Form 8:601–611. https://doi.org/10.1007/s12289-014-1215-6

    Article  Google Scholar 

  45. Varghese V, Akhil K, Ramesh MR, Chakradhar D (2019) Investigation on the performance of AlCrN and AlTiN coated cementedcarbide inserts during end milling of maraging steel under dry, wet andcryogenic environments. J Manuf Process 43:136–144. https://doi.org/10.1016/j.jmapro.2019.05.021

    Article  Google Scholar 

  46. Sreerama Reddy TV, Sornakumar T, Venkatarama Reddy M, Venkatram R (2009) Machinability of C45 steel with deep cryogenic treated tungsten carbide cutting tool inserts. Int J Refract Met Hard Mat 7:81–185. https://doi.org/10.1016/j.ijrmhm.2008.04.007

    Article  Google Scholar 

  47. Liu H, Wu C, Chen R (2011) Effects of cutting parameters on the surface roughness of Ti6Al4V titanium alloys in side milling. Solid State Phenom 175:289–293. https://doi.org/10.4028/www.scientific.net/SSP.175.289

    Article  Google Scholar 

  48. Hardt M, Klocke F, Döbbeler B, Binder M, Jawahir IS (2018) Experimental study on surface integrity of cryogenically machined Ti-6Al-4V alloy for biomedical devices. Procedia CIRP 71:181–186. https://doi.org/10.1016/j.procir.2018.05.094

    Article  Google Scholar 

  49. Yang X, Ren C, Wang Y, Chen G (2012) Experimental study on surface integrity of Ti-6Al-4V in high speed side milling. Trans Tianjin Univ 18:206–212. https://doi.org/10.1007/s12209-012-1784-8

    Article  Google Scholar 

  50. Yang D, Liu Z (2015) Surface topography analysis and cutting parameters optimization for peripheral milling titanium alloy Ti-6Al-4V. Int J Refract Met Hard Mat 51:192–200. https://doi.org/10.1016/j.ijrmhm.2015.04.001

    Article  Google Scholar 

  51. Vipindas K, Kuriachen B, Mathew J (2019) Investigations into the effect of process parameters on surface roughness and burr formation during micro end milling of TI-6AL-4V. Int J Adv Manuf Technol 100:1207–1222. https://doi.org/10.1007/s00170-016-9210-3

    Article  Google Scholar 

  52. Ibrahim GA, Haron CC, Ghani JA (2009) The effect of dry machining on surface integrity of titanium alloy Ti-6Al-4V. J Appl Sci 9:121–127. https://doi.org/10.3923/jas.2009.121.127

    Article  Google Scholar 

  53. Zhou JM, Bushlya V, Avdovic P, Ståhl JE (2012) Study of surface quality in high speed turning of Inconel 718 with uncoated and coated CBN tools. Int J Adv Manuf Technol 58:141–151. https://doi.org/10.1007/s00170-011-3374-7

    Article  Google Scholar 

  54. Pawade RS, Joshi SS, Brahmankar PK, Rahman M (2007) An investigation of cutting forces and surface damage in high-speed turning of inconel 718. J Mater Process Technol 192–193:139–146. https://doi.org/10.1016/j.jmatprotec.2007.04.049

    Article  Google Scholar 

  55. Venkatesh VC, Izman S (2008) Precision engineering. McGraw Hill Professional, London

    Google Scholar 

  56. Hussain O, Saleem SS, Ahmad B (2019) Friction and wear performance evaluation of UHMWPE using taguchi based grey approach: a study on the influence of load and bio-serum lubrication. Mater Chem Phys 239:121918. https://doi.org/10.1016/j.matchemphys.2019.121918

    Article  Google Scholar 

  57. Kumar S, Singh R (2019) Optimization of process parameters of metal inert gas welding with preheating on AISI 1018 mild steel using grey based taguchi method. Measurement 148:106924. https://doi.org/10.1016/j.measurement.2019.106924

    Article  Google Scholar 

  58. Ghetiya ND, Patel KM, Kavar AJ (2016) Multi-objective optimization of FSW process parameters of aluminium alloy using taguchi-based grey relational analysis. Trans Indian Inst Met 69:917–923. https://doi.org/10.1007/s12666-015-0581-1

    Article  Google Scholar 

  59. Jawaid A, Sharif S, Koksal S (2000) Evaluation of wear mechanisms of coated carbide tools when face milling titanium alloy. J Mater Process Technol 99:266–274. https://doi.org/10.1016/S0924-0136(99)00438-0

    Article  Google Scholar 

  60. Seah KHW, Rahman M, Yong KH (2003) Performance evaluation of cryogenically treated tungsten carbide cutting tool inserts. Proc Inst Mech Eng Part B J Eng Manuf 217:29–43. https://doi.org/10.1243/095440503762502260

    Article  Google Scholar 

  61. Vadivel K, Rudramoorthy R (2009) Performance analysis of cryogenically treated coated carbide inserts. Int J Adv Manuf Technol 42:222–232. https://doi.org/10.1007/s00170-008-1597-z

    Article  Google Scholar 

  62. Gill SS, Singh R, Singh H, Singh J (2008) Wear behaviour of cryogenically treated tungsten carbide inserts under dry and wet turning conditions. Int J Mach Tools Manuf 49:256–260. https://doi.org/10.1016/j.ijmachtools.2008.11.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ergün EKİCİ.

Additional information

Technical Editor: Izabel Fernanda Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EKİCİ, E., UZUN, G. Effects on machinability of cryogenic treatment applied to carbide tools in the milling of Ti6AI4V with optimization via the Taguchi method and grey relational analysis. J Braz. Soc. Mech. Sci. Eng. 44, 270 (2022). https://doi.org/10.1007/s40430-022-03572-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03572-1

Keywords

Navigation