Skip to main content
Log in

Comparison of combustion models based on fast chemistry assumption in large eddy simulation of pool fire

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In the present study, OpenFOAM software was adopted to implement a solver using the Steady Laminar Flamelet Model (SLFM) and Eddy Dissipation Concept (EDC) combustion models. Afterward, the compatibility of fast chemistry-based combustion models consisting of the Infinitely Fast Chemistry, Eddy Dissipation Model (EDM), EDC, and SLFM combustion models was studied in the simulation of 2.7 MW methane pool fire, by employing a one-equation sub-grid-scale turbulence model. Comparing the results against experimental data indicates that the SLFM model anticipates more flame width, and it is capable of predicting the mean turbulent kinetic energy with the maximum error of 4–8%. On the other hand, the EDM model can attain the mean vertical velocity of the flow in the range of 5–10% which is more accurate than the other models. Furthermore, the puffing frequency was derived by the Fast Fourier Transform analysis of vertical velocity, pressure, and temperature in a given time for each of these models. EDM and EDC combustion models illustrated a relative error of 7%, in predicting puffing frequency, compared to experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

EBU:

Eddy breakup model

EDC:

Eddy dissipation concept

EDM:

Eddy dissipation model

FDS:

Fire dynamic simulator

FFT:

Fast Fourier transform

HHR:

Heat release rate

IFC:

Infinitely fast chemistry

LES:

Large eddy simulation

PDF:

Probability density function

PIV:

Particle image velocimetry

SGS:

Sub-grid scale

SLFM:

Steady laminar flamelet model

VHS:

Volumetric heat source

\({{c}_{p}}\) :

Specific heat (J/K)

D :

Pool diameter (m)

\({{D}_{z}}\) :

Mixture’s molecular diffusion coefficient

f :

Frequency of puffing cycle (Hz)

g :

Gravitational Constant (\({{\mathrm{m}^{3}}}/\)kg s)

\({{k}_{\mathrm{sgs}}}\) :

Sub-grid-scale turbulent kinetic energy (\({{\mathrm{m}^{2}}}/{{\mathrm{s}^{2}}}\))

L :

Height of the flame (m)

\({{L}^{\mathrm{base}}}\) :

Characteristic length scale of pool fire (m)

P :

Pressure (kPa)

\({P}_{\infty }\) :

Ambient pressure (kPa)

\(\dot{Q}\) :

Fire heat release rate (W)

Sc:

Schmidt number

\({{T }_{\infty }}\) :

Ambient air temperature (K)

T :

Temperature (K)

\({{\tilde{u}}_{i}}\) :

ith component of filtered velocity (m/s)

\({{W}_{i}}\) :

Molecular weight of ith species (kg/mol)

X :

Length of the domain (m)

Y :

Height of the domain (m)

\({{Y}_{i}}\) :

Mass fraction of ith species

Z :

Width of the domain (m)

\(\widetilde{z}\) :

Filtered mixture fraction

\(\widetilde{{{z}''}}\) :

Filtered variance of mixture fraction

\(\bar{\rho }\) :

Averaged density (kg\(/{{\mathrm{m}^{3}}}\))

\({{\rho }_{\infty }}\) :

Ambient density (kg\(/{{\mathrm{m}^{3}}}\))

\(\chi \) :

Scalar dissipation rate (\({\mathrm{s}^{-1}}\))

\({\chi }_{\mathrm{st}}\) :

Stoichiometric scalar dissipation rate (\({\mathrm{s}^{-1}}\))

\(\mu \) :

Dynamic viscosity (\({\mathrm{N}\,\mathrm{s} {\mathrm{m}^{2}}}\))

\({\mu }_{\mathrm{t}}\) :

Turbulent dynamic viscosity (\({\mathrm{N}\,\mathrm{s} {\mathrm{m}^{2}}}\))

\({{\omega }_{i}}\) :

Production rate of ith species (\({\mathrm{kg}\,{\mathrm{m}^{3}}}/\mathrm{s}\))

\({{{\bar{\omega }}'''}_{F}}\) :

Mean reaction rate (\({\mathrm{kg}\,{\mathrm{m}^{3}}}/\mathrm{s}\))

\({{\varepsilon }_{\mathrm{sgs}}}\) :

Sub-grid-scale dissipation of turbulent kinetic energy (\({{\mathrm{m}^{2}}}/{{\mathrm{s}^{3}}}\))

\(\lambda \) :

Thermal conductivity coefficient (\(\mathrm{W}/{\mathrm{m}\,\mathrm{K}}\))

References

  1. Dhurandher BK, Ravi D et al (2017) An experimental study of vertical centreline temperature and velocity profile of buoyant plume in cubical compartment. J Braz Soc Mech Sci Eng 39(5):1813–1822

    Article  Google Scholar 

  2. Ahmadi O, Mortazavi SB, Pasdarshahri H et al (2019) Modeling of boilover phenomenon consequences: computational fluid dynamics (CFD) and empirical correlations. Process Saf Environ Prot 129:25–39

    Article  Google Scholar 

  3. McGrattan K, Hostikka S et al (2013) Fire dynamics simulator technical reference guide volume 1: mathematical model. NIST Spec Publ 1018(1):175

    Google Scholar 

  4. Novozhilov V (2001) Computational fluid dynamics modeling of compartment fires. Prog Energy Combust Sci 27(5):611–666

    Article  Google Scholar 

  5. Hostikka S, McGrattan KB (2001) Large eddy simulation of wood combustion. Proceedings of the Ninth International Interflam Conference, pp 755–762

  6. Huang YL, Shiu HR, Chang SH et al (2008) Comparison of combustion models in cleanroom fire. J Mech 24(3):267–275

    Article  Google Scholar 

  7. Maragkos G, Beji T, Merci B (2017) Large eddy simulations of CH\(_4\) fire plumes. Flow Turb Combust 99(1):239–278

    Article  Google Scholar 

  8. Maragkos G, Beji T, Merci B (2017) Advances in modelling in CFD simulations of turbulent gaseous pool fires. Combust Flame 181:22–38

    Article  Google Scholar 

  9. Weckman EJ, Strong AB (1996) Experimental investigation of the turbulence structure of medium-scale methanol pool fires. Combust Flame 105(3):245–266

    Article  Google Scholar 

  10. Wen JX, Huang LY, Roberts J (2001) The effect of microscopic and global radiative heat exchange on the field predictions of compartment fires. Fire Saf J 36(3):205–223

    Article  Google Scholar 

  11. Rawat R, Pitsch H, Ripoll JF (2002) Large-eddy simulation of pool fires with detailed chemistry using an unsteady flamelet model. In: Proceeding of the summer program. Center for Turbulence Research

  12. Desjardin PE (2005) Modeling of conditional dissipation rate for flamelet models with application to large eddy simulation of fire plumes. Combust Sci Technol 177(10):1883–1916

    Article  Google Scholar 

  13. Tieszen SR, O’hern TJ (2002) Experimental study of the flow field in and around a one meter diameter methane fire. Combust Flame 129(4):378–391

    Article  Google Scholar 

  14. DesJardin PE, O’Hern TJ, Tieszen SR (2004) Large eddy simulation and experimental measurements of the near-field of a large turbulent helium plume. Phys Fluids 16(6):1866–1883

    Article  Google Scholar 

  15. Marchand A, Verma S, Xu R et al (2019) Simulations of a turbulent line fire with a steady flamelet combustion model coupled with models for non-local and local gas radiation effects. Fire Saf J 106:105–113

    Article  Google Scholar 

  16. Yuen ACY, Yeoh GH, Timchenko V et al (2016) Study of three LES subgrid-scale turbulence models for predictions of heat and mass transfer in large-scale compartment fires. Numer Heat Trans Appl 69(11):1223–1241

    Article  Google Scholar 

  17. Yuen ACY, Yeoh GH, Timchenko V et al (2016) Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment. Int J Heat Mass Trans 96:171–188

    Article  Google Scholar 

  18. Yuen ACY, Yeoh GH, Timchenko V et al (2017) On the influences of key modelling constants of large eddy simulations for large-scale compartment fires predictions. Int J Comput Fluid Dyn 31(6–8):324–337

    Article  MathSciNet  Google Scholar 

  19. Heidarinejad G, Pasdarshahri P, Safarzadeh M (2019) The importance of using the combustion and sub-grid model in modelling of large pool fire flow field. Amirkabir J Mech Eng (in Persian)

  20. Poinsot T, Veynante D (2005) Theoretical and numerical combustion. RT Edwards Inc., Murarrie

    Google Scholar 

  21. White JP, Vilfayeau S et al (2017) Modeling flame extinction and reignition in large eddy simulations with fast chemistry. Fire Saf J 90:72–85

    Article  Google Scholar 

  22. Merci B, Maragkos E, Mura A (2010) Modeling of turbulent combustion. Handbook of combust: Online, pp 175–203

  23. Kassem H, Saqr K et al (2011) Implementation of the eddy dissipation model of turbulent non-premixed combustion in OpenFOAM. Int Commun Heat Mass Trans 38(3):363–367

    Article  Google Scholar 

  24. Ertesvåg IS (2019) Analysis of some recently proposed modifications to the eddy dissipation concept (EDC). Combust Sci Technol. https://doi.org/10.1080/00102202.2019.1611565

    Article  Google Scholar 

  25. Peters N (1984) Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog Energy Combust Sci 10(3):319–339

    Article  Google Scholar 

  26. Peters N (1988) Laminar flamelet concepts in turbulent combustion. Symp Combust 21(1):1231–1250

    Article  Google Scholar 

  27. Pierce CD, Moin P (2004) Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J Fluid Mech 504:73–97

    Article  MathSciNet  Google Scholar 

  28. Design Reaction (2011) CHEMKIN Tutorials Manual CHEMKIN® Software. 10112/15112

  29. Müller H, Ferraro F, Pfitzner M (2013) Implementation of a steady laminar flamelet model for non-premixed combustion in LES and RANS simulations. In: International OpenFOAM workshop

  30. Jiménez C, Ducros F et al (2004) Subgrid scale variance and dissipation of a scalar field in large eddy simulations. Phys Fluids 13(6):1748–1754

    Article  Google Scholar 

  31. Han W, Scholtissek A, Hasse C (2019) The role of tangential diffusion in evaluating the performance of flamelet models. Proc Combust Inst 37(2):1767–1774

    Article  Google Scholar 

  32. Yeoh GH, Cheung SCP et al (2011) Comparative Large Eddy Simulation study of a large-scale buoyant fire. Phys Fluids 47(9):1197–1208

    Google Scholar 

  33. Cook AW, Riley J (1994) A subgrid model for equilibrium chemistry in turbulent flows. Phys Fluids 6(8):2868–2870

    Article  Google Scholar 

  34. Moukalled F et al (2016) The finite volume method in computational fluid dynamics. Springer International Publishing, Switzerland

    Book  Google Scholar 

  35. Quintiere J (2006) Fundamentals of fire phenomena. Wiley, Hoboken

    Book  Google Scholar 

  36. Cetegen BM, Tarek A (1993) Experiments on the periodic instability of buoyant plumes and pool fires. Combust Flame 93(1–2):157–184

    Article  Google Scholar 

  37. Moreno-Boza D, Coenen W et al (2018) On the critical conditions for pool-fire puffing. Combust Flame 192:426–438

    Article  Google Scholar 

  38. Hu L, Hu J, de Ris JL (2015) Flame necking-in and instability characterization in small and medium pool fires with different lip heights. Combust Flame 162(4):1095–1103

    Article  Google Scholar 

  39. O’hern TJ, Weckman EJ et al (2005) Experimental study of a turbulent buoyant helium plume. Phys Fluids 544:143–171

    MATH  Google Scholar 

  40. Drysdale D (2011) An introduction to fire dynamics. Wiley, Hoboken

    Book  Google Scholar 

  41. Turns SR (2012) An introduction to combustion. McGraw-hill, New York

    Google Scholar 

  42. Heskestad G (1981) Peak gas velocities and flame heights of buoyancy-controlled turbulent diffusion flames. Phys Fluids 18(1):951–960

    Google Scholar 

  43. Miao Z, Wenhua S, Ji W, Zhen C (2014) Accident consequence simulation analysis of pool fire in fire dike. Proc Eng 84:565–577

    Article  Google Scholar 

  44. Zukoski EE, Cetegen BM, Kubota T (1985) Visible structure of buoyant diffusion flames. Symp Combust 20(1):361–366

    Article  Google Scholar 

  45. Pasdarshahri H, Heidarinejad G, Mazaheri K (2012) Large eddy simulation on one-meter methane pool fire using one-equation sub-grid scale model. MCS 7:11–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Pasdarshahri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Mario Eduardo Santos Martins, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razeghi, S.M.J., Safarzadeh, M. & Pasdarshahri, H. Comparison of combustion models based on fast chemistry assumption in large eddy simulation of pool fire. J Braz. Soc. Mech. Sci. Eng. 42, 208 (2020). https://doi.org/10.1007/s40430-020-02291-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02291-9

Keywords

Navigation