Skip to main content
Log in

Accuracy of three different versions of flamelet-generated manifold with/without radiation coupling in simulation of pool fire

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The pool fire scenario, a benchmark for fire dynamic studies, was selected to verify the influence of a combustion model. The flamelet-generated manifold (FGM) combustion model and large eddy simulation method were implemented in the fireFoam solver. Three versions of the FGM combustion model, namely basic FGM, FGM with heat equation, and FGM with radiation table, were compared in the pool fire simulation with experiment results in different mass fluxes. The fuel mass fluxes occurring in the pool fires were 0.040, 0.053, and 0.066 kg/m2 s, indicating a wide range of fuel mass fluxes. Three versions of the FGM model provided an acceptable prediction of air entrainment; however, the FGM with heat equation, compared with the other two models, was better in predicting of the fire parameters such as velocity and fluctuation. The relative error in predicting velocity fluctuation was 14.5% in the FGM with heat equation while more than 20% in other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ren F, Zhang X, Hu L, Sun X (2019) An experimental study on the effect of fire growth in a lower-floor compartment on fire evolution and facade flame ejection from an upper-floor compartment. Proc Combust Inst 37:3909–3917. https://doi.org/10.1016/j.proci.2018.07.014

    Article  Google Scholar 

  2. Rengel B, Àgueda A, Pastor E, Casal J, Planas E, Hu L, Palacios A (2020) Experimental and computational analysis of vertical jet fires of methane in normal and sub-atmospheric pressures. Fuel 265:116878

    Article  Google Scholar 

  3. Chen T, Yuen A, Yeoh G, Yang W, Chan Q (2019) Fire risk assessment of combustible exterior cladding using a collective numerical database. Fire 2:11. https://doi.org/10.3390/fire2010011

    Article  Google Scholar 

  4. Fan CG, Jin ZF, Zhang JQ, Zhu HY (2017) Effects of ambient wind on thermal smoke exhaust from a shaft in tunnels with natural ventilation. Appl Therm Eng 117:254–262. https://doi.org/10.1016/j.applthermaleng.2017.02.017

    Article  Google Scholar 

  5. Zhou L, Zeng D, Li D, Chaos M (2017) Total radiative heat loss and radiation distribution of liquid pool fire flames. Fire Saf J 89:16–21. https://doi.org/10.1016/j.firesaf.2017.02.004

    Article  Google Scholar 

  6. Yeoh GH, Yuen KK (2009) Computational fluid dynamics in fire engineering. Comput Fluid Dyn Fire Eng. https://doi.org/10.1016/B978-0-7506-8589-4.X0001-4

    Article  Google Scholar 

  7. Ahmadi O, Mortazavi SB, Pasdarshahri H, Mohabadi HA (2019) Consequence analysis of large-scale pool fire in oil storage terminal based on computational fluid dynamic (CFD). Process Saf Environ Prot 123:379–389. https://doi.org/10.1016/j.psep.2019.01.006

    Article  Google Scholar 

  8. Maragkos G, Beji T, Merci B (2019) Towards predictive simulations of gaseous pool fires. Proc Combust Inst 37:3927–3934. https://doi.org/10.1016/j.proci.2018.05.162

    Article  Google Scholar 

  9. Lu X, Yang Z, Xu Z, Xiong C (2020) Scenario simulation of indoor post-earthquake fire rescue based on building information model and virtual reality. Adv Eng Softw 143:102792

    Article  Google Scholar 

  10. Šulc S, Šmilauer V, Patzák B, Cábová K, Wald F (2019) Linked simulation for fire-exposed elements using CFD and thermo-mechanical models. Adv Eng Softw 131:12–22

    Article  Google Scholar 

  11. Zhang K, Ghobadian A, Nouri JM (2017) Comparative study of non-premixed and partially-premixed combustion simulations in a realistic Tay model combustor. Appl Therm Eng 110:910–920. https://doi.org/10.1016/j.applthermaleng.2016.08.223

    Article  Google Scholar 

  12. van Oijen JA, Donini A, Bastiaans RJM, Ten Thije Boonkkamp JHM, de Goey LPH (2016) State-of-the-art in premixed combustion modeling using flamelet generated manifolds. Progress Energy Combust Sci 57:30–74. https://doi.org/10.1016/j.pecs.2016.07.001

    Article  Google Scholar 

  13. De S, Agarwal AK, Chaudhuri S, Sen S (2018) Modeling and simulation of turbulent combustion. Springer, Berlin

    Book  Google Scholar 

  14. Wollny P, Rogg B, Kempf A (2018) Modelling heat loss effects in high temperature oxy-fuel flames with an efficient and robust non-premixed flamelet approach. Fuel 216:44–52. https://doi.org/10.1016/j.fuel.2017.11.127

    Article  Google Scholar 

  15. Cheung SC, Yeoh G (2009) A fully-coupled simulation of vortical structures in a large-scale buoyant pool fire. Int J Therm Sci 48(12):2187–2202

    Article  Google Scholar 

  16. van Oijen JA (2002) 2ss flamelet-generated manifolds: development and application to premixed laminar flames 125. https://doi.org/10.6100/IR557848

  17. Version D (2009) Incorporating unsteady flow-field effects in flamelet- generated manifolds Incorporating unsteady flow-field effects in Flamelet-Generated Manifolds. https://doi.org/10.6100/IR642962

  18. White JP, Vilfayeau S, Marshall AW, Trouvé A, McDermott RJ (2017) Modeling flame extinction and reignition in large eddy simulations with fast chemistry. Fire Saf J 90:72–85. https://doi.org/10.1016/j.firesaf.2017.04.023

    Article  Google Scholar 

  19. Pierce CD (2001) Progress-variable approach for large-eddy c Copyright 2001 by Charles David Pierce. Doctoral dissertation of Stanford (2001)

  20. Marchand A, Verma S, Xu R, White J, Marshall A, Rogaume T, Richard F, Luche J, Trouvé A (2019) Simulations of a turbulent line fire with a steady flamelet combustion model coupled with models for non-local and local gas radiation effects. Fire Saf J 106:105–113

    Article  Google Scholar 

  21. Both A (2017) RANS-FGM simulation of n-heptane spray ame in OpenFOAM

  22. Yeoh G, Cheung S, Tu J, Barber T (2011) Comparative large eddy simulation study of a large-scale buoyant fire. Heat Mass Transf 47(9):1197–1208

    Article  Google Scholar 

  23. Yuen AC, Yeoh GH, Timchenko V, Cheung SC, Chan QN, Chen T (2017) On the influences of key modelling constants of large eddy simulations for large-scale compartment fires predictions. Int J Comput Fluid Dyn 31(6–8):324–337

    Article  MathSciNet  Google Scholar 

  24. Yuen A, Yeoh G, Timchenko V, Cheung S, Barber T (2016) Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment. Int J Heat Mass Transf 96:171–188

    Article  Google Scholar 

  25. Zhiyin Y (2015) Large-eddy simulation: past, present and the future. Chin J Aeronaut 28:11–24. https://doi.org/10.1016/j.cja.2014.12.007

    Article  Google Scholar 

  26. Pasdarshahri H, Heidarinejad G, Mazaheri K (2011) Large eddy simulation on one-meter methane pool fire using one-equation sub-grid scale model. In: MCS, pp 11–15

  27. Cheung SCP, Yeoh GH (2009) A fully-coupled simulation of vortical structures in a large-scale buoyant pool fire. Int J Therm Sci 48:2187–2202. https://doi.org/10.1016/j.ijthermalsci.2009.04.011

    Article  Google Scholar 

  28. Safarzadeh M, Heidarinejad G, Pasdarshahri H (2020) Evaluation of LES sub-grid scale models and time discretization schemes for prediction of convection effect in a buoyant pool fire. Heat Mass Transf 57:631–646

    Article  Google Scholar 

  29. Yu Z, Zhang H, Ye T, Zhu M (2018) Large eddy simulation of turbulent premixed piloted flame using artificial thickened flame model coupled with tabulated chemistry. Appl Math Mech 39(9):1277–1294

    Article  MathSciNet  Google Scholar 

  30. Pohl BS, Frank G, Pfitzner M, Hickel JMANDS (2014) Flamelet generated manifolds for modeling turbulent non-premixed combustion in OpenFOAM. SFB/TRR40 Annual Report 2014, 209–216

  31. Razeghi SMJ, Safarzadeh M, Pasdarshahri H (2020) Comparison of combustion models based on fast chemistry assumption in large eddy simulation of pool fire. J Brazil Soc Mech Sci Eng 42(4):1–15

    Article  Google Scholar 

  32. Huo H, Wang X, Yang V (2014) A general study of counterflow diffusion flames at subcritical and supercritical conditions: oxygen/hydrogen mixtures. Combust Flame 161:3040–3050

    Article  Google Scholar 

  33. Li T, Kong F, Xu B, Wang X (2019) Turbulent combustion modeling using a flamelet generated manifold approach—a validation study in OpenFOAM. Appl Math Mech 40(8):1197–1210

    Article  MathSciNet  Google Scholar 

  34. Mohamed Ibrahim N, Udayakumar M (2020) Coupling RSM with soot model for the study of soot formation in a momentum-dominated strained jet flames. J Therm Anal Calorim 141:2369–2389

    Article  Google Scholar 

  35. Yu Z, Zhang H, Ye T, Zhu M (2018) Large eddy simulation of turbulent premixed and stratified combustion using flame surface density model coupled with tabulation method. Appl Math Mech 39(12):1719–1736

    Article  MathSciNet  Google Scholar 

  36. Yu P, Norinaga K, Watanabe H, Kitagawa T (2018) Prediction of hot coke oven gas reforming by LES coupled with the extended flamelet/progress variable approach. Fuel 231:234–243

    Article  Google Scholar 

  37. Le VM, Marchand A, Verma S, Xu R, White J, Marshall A, Rogaume T, Richard F, Luche J, Trouvé A (2019) Simulations of a turbulent line fire with a steady flamelet combustion model coupled with models for non-local and local gas radiation effects. Fire Saf J 106:105–113. https://doi.org/10.1016/j.firesaf.2019.04.011

    Article  Google Scholar 

  38. Yuen ACY, Yeoh GH, Yuen RKK, Chen T (2013) Numerical simulation of a ceiling jet fire in a large compartment. Procedia Eng 52:3–12. https://doi.org/10.1016/j.proeng.2013.02.097

    Article  Google Scholar 

  39. Cheung CP (2006) Modelling of building fires coupled with turbulent, combustion, soot chemistry and radiation effects. City University of Hong Kong, Hong Kong

    Google Scholar 

  40. Coelho P (2009) Approximate solutions of the filtered radiative transfer equation in large eddy simulations of turbulent reactive flows. Combust Flame 156(5):1099–1110

    Article  Google Scholar 

  41. Fraga G, Miranda F, França F, Janicka J, Coelho P (2020) Assessment of a model for emission subgrid-scale turbulence-radiation interaction applied to a scaled Sandia flame DD. J Quant Spectrosc Radiat Transf 248:106986

    Article  Google Scholar 

  42. Cirrone DMC, Makarov D, Molkov V (2019) Thermal radiation from cryogenic hydrogen jet fires. Int J Hydrog Energy 44(17):8874–8885

    Article  Google Scholar 

  43. Tieszen S, O’hern T, Schefer R, Weckman E, Blanchat T (2002) Experimental study of the flow field in and around a one meter diameter methane fire. Combust Flame 129(4):378–391

    Article  Google Scholar 

  44. Ouyang Y, He Q, Wang C, Shen Z (2020) Numerical study of hydrogen/methane buoyant fires using FireFoam. Int J Hydrog Energy 45:13551–13558

    Article  Google Scholar 

  45. Fancello A (2017) Dynamic and turbulent premixed combustion using flamelet-generated manifold in OpenFOAM 138. https://doi.org/10.6100/IR781467

  46. Safarzadeh M, Heidarinejad G, Pasdarshahri H (2020) The importance of compatible sub-grid scale and spatial discretization models on the simulation of large-scale pool fire. J Braz Soc Mech Sci Eng 42(12):1–18

    Article  Google Scholar 

  47. Maragkos G, Merci B (2017) Large eddy simulations of CH4 fire plumes. Flow Turbul Combust 99:239–278. https://doi.org/10.1007/s10494-017-9803-4

    Article  Google Scholar 

  48. Pope SB (2004) Ten questions concerning the large-eddy simulation of turbulent flows. New J Phys 6(1):35

    Article  Google Scholar 

  49. Maragkos G, Beji T, Merci B (2017) Advances in modelling in CFD simulations of turbulent gaseous pool fires. Combust Flame 181:22–38. https://doi.org/10.1016/j.combustflame.2017.03.012

    Article  Google Scholar 

  50. Maragkos G, Merci B (2017) Large eddy simulations of CH4 fire plumes. Flow Turbul Combust 99(1):239–278

    Article  Google Scholar 

  51. Marchand A, Verma S, White J, Marshall A, Rogaume T, Richard F, Luche J, Trouvé A (2018) Simulations of a turbulent line fire with a steady flamelet combustion model and non-gray gas radiation models. J Phys Conf Ser 4:042009

    Google Scholar 

  52. Wang HY (2009) Numerical study of under-ventilated fire in medium-scale enclosure. Build Environ 44:1215–1227. https://doi.org/10.1016/j.buildenv.2008.09.011

    Article  Google Scholar 

  53. Tieszen SR, O’Hern TJ, Weckman EJ, Schefer RW (2004) Experimental study of the effect of fuel mass flux on a 1-m-diameter methane fire and comparison with a hydrogen fire. Combust Flame 139:126–141. https://doi.org/10.1016/j.combustflame.2004.08.006

    Article  Google Scholar 

  54. Sunde B, Faghri M (2008) Transport phenonema in fires. WIT Press, pp 1–473

  55. Miao Z, Wenhua S, Ji W, Zhen C (2014) Accident consequence simulation analysis of pool fire in fire dike. Procedia Eng 84:565–577

    Article  Google Scholar 

  56. Zeuthen ED (2016) Radiation emissions from turbulent diffusion flames burning large hydrocarbon fuels. Masters Thesis, Oregon State University

    Google Scholar 

  57. Zeuthen ED, Blunck DL (2017) Radiation emissions from turbulent diffusion flames burning vaporized jet and jet-like fuels. Energy Fuels 31(12):14150–14160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Pasdarshahri.

Ethics declarations

Conflict of interest

The authors declare that they have neither conflict of interest, nor external funding.

Additional information

Technical Editor: Francis HR Franca.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarzadeh, M., Heidarinejad, G. & Pasdarshahri, H. Accuracy of three different versions of flamelet-generated manifold with/without radiation coupling in simulation of pool fire. J Braz. Soc. Mech. Sci. Eng. 44, 210 (2022). https://doi.org/10.1007/s40430-022-03519-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03519-6

Keywords

Navigation