Skip to main content
Log in

Large Eddy Simulation of Turbulent Premixed Swirling Flames Using Dynamic Thickened Flame with Tabulated Detailed Chemistry

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A sub-grid scale (SGS) combustion model by combining dynamic thickened flame (DTF) with flamelet generated manifolds (FGM) tabulation approach (i.e. DTF-FGM) is developed for investigating turbulent premixed combustion. In contrast to the thickened flame model, the dynamic thickening factor of the DTF model is determined from the flame sensor, which is obtained from the normalized gradient of the reaction progress variable from the one-dimensional freely propagating premixed flame simulations. Therewith the DTF model can ensure that the thickening of the flame is limited to the regions where it is numerically necessary. To describe the thermo-chemistry states, large eddy simulation (LES) transport equations for two characteristic scalars (the mixture fraction and the reaction progress variable) and relevant sub-grid variances in the DTF-FGM model are presented. As to the evaluation of different SGS combustion models, another model by utilizing the combination of presumed probability density function (PPDF) and FGM (i.e. PPDF-FGM) is also described. LES of two cases with or without swirl in premixed regime of the Cambridge swirl burner flames are performed to evaluate the developed SGS combustion model. The predicted results are compared with the experimental data in terms of the influence of different LES grids, model sensitivities to the thickening factor, the wrinkling factor, and the PPDF of characteristic scalars, the evaluation of different modelling approaches for the sub-grid variances of characteristic scalars, and the predictive capability of different SGS combustion models. It is shown that the LES results with the DTF-FGM model are in reasonable agreement with the experimental data, and better than the results with the PPDF-FGM approach due to its ability to predict better in regions where flame is not resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Peters, N.: Turbulent Combustion. Cambridge university press, Cambridge (2000)

    Book  MATH  Google Scholar 

  3. Pitsch, H.: A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame 143(4), 587–598 (2005)

    Article  Google Scholar 

  4. Moureau, V., Fiorina, B., Pitsch, H.: A level set formulation for premixed combustion LES considering the turbulent flame structure. Combust. Flame 156(4), 801–812 (2009)

    Article  Google Scholar 

  5. Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. In: Symposium (International) on Combustion 1998, vol. 1, pp 917–925

  6. Ma, T., Stein, O., Chakraborty, N., Kempf, A.: A posteriori testing of algebraic flame surface density models for LES. Combust. Theor. Model. 17(3), 431–482 (2013)

    Article  MathSciNet  Google Scholar 

  7. Ma, T., Stein, O., Chakraborty, N., Kempf, A.: A posteriori testing of the flame surface density transport equation for LES. Combust. Theor. Model. 18(1), 32–64 (2014)

    Article  MathSciNet  Google Scholar 

  8. Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.-U., Krebs, W., Prade, B., Kaufmann, P., Veynante, D.: Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame 137(4), 489–505 (2004)

    Article  Google Scholar 

  9. Légier, J.-P., Poinsot, T., Veynante, D.: Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion. In: Proc. of the summer program 2000, Center for Turbulence Research, pp 157–168

  10. Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., Bérat, C.: LES of an ignition sequence in a gas turbine engine. Combust. Flame 154(1), 2–22 (2008)

    Article  Google Scholar 

  11. Schmitt, P., Poinsot, T., Schuermans, B., Geigle, K.: Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner. J. Fluid Mech. 570, 17–46 (2007)

    Article  MATH  Google Scholar 

  12. Gicquel, O., Darabiha, N., Thévenin, D.: Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28(2), 1901–1908 (2000)

    Article  Google Scholar 

  13. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust. Flame 140(3), 147–160 (2005)

    Article  Google Scholar 

  14. Oijen, J.V., Goey, L.D.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161(1), 113–137 (2000)

    Article  Google Scholar 

  15. Van Oijen, J., Lammers, F., De Goey, L.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127(3), 2124–2134 (2001)

    Article  Google Scholar 

  16. Fiorina, B., Vicquelin, R., Auzillon, P., Darabiha, N., Gicquel, O., Veynante, D.: A filtered tabulated chemistry model for LES of premixed combustion. Combust. Flame 157(3), 465–475 (2010)

    Article  Google Scholar 

  17. Kuenne, G., Ketelheun, A., Janicka, J.: LES Modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust. Flame 158(9), 1750–1767 (2011)

    Article  Google Scholar 

  18. Ketelheun, A., Kuenne, G., Janicka, J.: Heat transfer modeling in the context of Large Eddy Simulation of premixed combustion with tabulated chemistry. Flow Turbul. Combust. 91(4), 867–893 (2013)

    Article  Google Scholar 

  19. Wang, G., Boileau, M., Veynante, D.: Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame 158(11), 2199–2213 (2011)

    Article  Google Scholar 

  20. Subramanian, V., Domingo, P., Vervisch, L.: Large eddy simulation of forced ignition of an annular bluff-body burner. Combust. Flame 157(3), 579–601 (2010)

    Article  Google Scholar 

  21. Sweeney, M.S., Hochgreb, S., Dunn, M.J., Barlow, R.S.: The structure of turbulent stratified and premixed methane/air flames I: Non-swirling flows. Combust. Flame 159(9), 2896–2911 (2012)

    Article  Google Scholar 

  22. Sweeney, M.S., Hochgreb, S., Dunn, M.J., Barlow, R.S.: The structure of turbulent stratified and premixed methane/air flames II: Swirling flows. Combust. Flame 159(9), 2912–2929 (2012)

    Article  Google Scholar 

  23. Zhou, R., Balusamy, S., Sweeney, M.S., Barlow, R.S., Hochgreb, S.: Flow field measurements of a series of turbulent premixed and stratified methane/air flames. Combust. Flame 160(10), 2017–2028 (2013)

    Article  Google Scholar 

  24. Brauner, T., Jones, W., Marquis, A.: LES of the Cambridge Stratified Swirl Burner using a Sub-grid pdf Approach. Flow Turbul. Combust. 96(4), 965–985 (2016)

    Article  Google Scholar 

  25. Mercier, R., Schmitt, T., Veynante, D., Fiorina, B.: The influence of combustion SGS submodels on the resolved flame propagation. Application to the LES of the Cambridge stratified flames. Proc. Combust. Inst. 35(2), 1259–1267 (2015)

    Article  Google Scholar 

  26. Nambully, S., Domingo, P., Moureau, V., Vervisch, L.: A filtered-laminar-flame PDF sub-grid scale closure for LES of premixed turbulent flames. Part I: forMalism and application to a bluff-body burner with differential diffusion. Combust. Flame 161(7), 1756–1774 (2014)

    Article  Google Scholar 

  27. Nambully, S., Domingo, P., Moureau, V., Vervisch, L.: A filtered-laminar-flame PDF sub-grid-scale closure for LES of premixed turbulent flames: II. Application to a stratified bluff-body burner. Combust. Flame 161(7), 1775–1791 (2014)

    Article  Google Scholar 

  28. Proch, F., Kempf, A.M.: Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry. Combust. Flame 161(10), 2627–2646 (2014)

    Article  Google Scholar 

  29. Van Oijen, J., Bastiaans, R., De Goey, L.: Low-dimensional manifolds in direct numerical simulations of premixed turbulent flames. Proc. Combust. Inst. 31(1), 1377–1384 (2007)

    Article  Google Scholar 

  30. Pitsch, H.: FlameMaster v3. 1: A C ++ computer program for 0D combustion and 1D laminar flame calculations. http://www.stanford.edu/hpitsch/ (1998)

  31. Smith, G., Golden, D., Frenklach, M., Moriarty, N., Eiteneer, B., Goldenberg, M., Bowman, C., Hanson, R., Song, S., Gardiner Jr, W.: GRI-Mech 3.0. http://www.me.berkeley.edu/grimech/ (2000)

  32. Curtiss, C.F., Hirschfelder, J.O.: Transport properties of multicomponent gas mixtures. J. Chem. Phys. 17(6), 550–555 (1949)

    Article  MATH  Google Scholar 

  33. Bilger, R., Stårner, S, Kee, R.: On reduced mechanisms for methane/air combustion in nonpremixed flames. Combust. Flame 80(2), 135–149 (1990)

    Article  Google Scholar 

  34. Shoshin, Y., Tecce, L., Jarosinski, J.: Experimental and computational study of lean limit methane-air flame propagating upward in a 24 mm diameter tube. Combust. Sci. Technol. 180(10-11), 1812–1828 (2008)

    Article  Google Scholar 

  35. Ihme, M., Shunn, L., Zhang, J.: Regularization of reaction progress variable for application to flamelet-based combustion models. J. Comput. Phys. 231(23), 7715–7721 (2012)

    Article  Google Scholar 

  36. Niu, Y.-S., Vervisch, L., Tao, P.D.: An optimization-based approach to detailed chemistry tabulation: Automated progress variable definition. Combust. Flame 160(4), 776–785 (2013)

    Article  Google Scholar 

  37. Zhang, H., Han, C., Ye, T., Ren, Z.: Large eddy simulation of turbulent premixed combustion using tabulated detailed chemistry and presumed probability density function. J. Turbul. 17(3), 327–355 (2016)

    Article  MathSciNet  Google Scholar 

  38. Auzillon, P., Gicquel, O., Darabiha, N., Veynante, D., Fiorina, B.: A Filtered Tabulated Chemistry model for LES of stratified flames. Combust. Flame 159 (8), 2704–2717 (2012)

    Article  Google Scholar 

  39. Ribert, G., Champion, M., Gicquel, O., Darabiha, N., Veynante, D.: Modeling nonadiabatic turbulent premixed reactive flows including tabulated chemistry. Combust. Flame 141(3), 271–280 (2005)

    Article  Google Scholar 

  40. Ribert, G., Champion, M., Plion, P.: Modeling turbulent reactive flows with variable equivalence ratio: application to the calculation of a reactive shear layer. Combust. Sci. Technol. 176(5-6), 907–923 (2004)

    Article  Google Scholar 

  41. Wall, C., Boersma, B.J., Moin, P.: An evaluation of the assumed beta probability density function subgrid-scale model for large eddy simulation of nonpremixed, turbulent combustion with heat release. Phys. Fluids (1994-present) 12(10), 2522–2529 (2000)

    Article  MATH  Google Scholar 

  42. Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Chen, Y., Ihme, M.: Large-eddy simulation of a piloted premixed jet burner. Combust. Flame 160(12), 2896–2910 (2013)

    Article  Google Scholar 

  44. Galpin, J., Angelberger, C., Naudin, A., Vervisch, L.: Large-eddy simulation of H 2–air auto-ignition using tabulated detailed chemistry. J. Turbul. 9, 1–21 (2008)

    Google Scholar 

  45. Domingo, P., Vervisch, L., Veynante, D.: Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 152(3), 415–432 (2008)

    Article  Google Scholar 

  46. Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 1. a priori study and presumed PDF closure. Combust. Flame 155(1), 70–89 (2008)

    Article  Google Scholar 

  47. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids (1994-present) 12(7), 1843–1863 (2000)

    Article  MATH  Google Scholar 

  48. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests. Combust. Flame 131(1), 159–180 (2002)

    Article  Google Scholar 

  49. Gouldin, F., Bray, K., Chen, J.-Y.: Chemical closure model for fractal flamelets. Combust. Flame 77(3), 241–259 (1989)

    Article  Google Scholar 

  50. Pierce, C.D., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids (1994-present) 10(12), 3041–3044 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Merlin, C., Domingo, P., Vervisch, L.: Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC)–a flamelet presumed-pdf closure preserving laminar flame speed. Comptes Rendus Mé,canique 340(11), 917–932 (2012)

    Article  Google Scholar 

  52. Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 2. Application in LES of Sandia flames D and E. Combust. Flame 155(1), 90–107 (2008)

    Article  MATH  Google Scholar 

  53. Pitsch, H., Steiner, H.: Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids (1994-present) 12(10), 2541–2554 (2000)

    Article  MATH  Google Scholar 

  54. Bray, K.: The challenge of turbulent combustion. In: Symposium (International) on Combustion 1996, vol. 1, pp 1–26

  55. Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28(3), 193–266 (2002)

    Article  Google Scholar 

  56. Vreman, B., Geurts, B., Kuerten, H.: Large-eddy simulation of the temporal mixing layer using the Clark model. Theor. Comput. Fluid Dyn. 8(4), 309–324 (1996)

    Article  MATH  Google Scholar 

  57. Vreman, B., Geurts, B., Kuerten, H.: Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech. 339, 357–390 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  58. Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A (1989-1993) 4(3), 633–635 (1992)

    Article  MathSciNet  Google Scholar 

  59. Meneveau, C., Lund, T.S., Cabot, W.H.: A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996)

    Article  MATH  Google Scholar 

  60. Pope, S.B.: Turbulent Flows. Cambridge university press, Cambridge (2000)

    Book  MATH  Google Scholar 

  61. Dinesh, K.R., Kirkpatrick, M.: Study of jet precession, recirculation and vortex breakdown in turbulent swirling jets using LES. Comput. Fluids 38(6), 1232–1242 (2009)

    Article  MATH  Google Scholar 

  62. Dinesh, K.R., Jenkins, K., Savill, A., Kirkpatrick, M.: Swirl effects on external intermittency in turbulent jets. Int. J. Heat Fluid Flow 33(1), 193–206 (2012)

    Article  Google Scholar 

  63. Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame 143(4), 566–586 (2005)

    Article  Google Scholar 

  64. Lu, X., Wang, S., Sung, H.-G., Hsieh, S.-Y., Yang, V.: Large-eddy simulations of turbulent swirling flows injected into a dump chamber. J. Fluid Mech. 527, 171–195 (2005)

    Article  MATH  Google Scholar 

  65. Barlow, R.S., Dunn, M.J., Sweeney, M.S., Hochgreb, S.: Effects of preferential transport in turbulent bluff-body-stabilized lean premixed CH 4/air flames. Combust. Flame 159(8), 2563–2575 (2012)

    Article  Google Scholar 

  66. Dunn, M.J., Barlow, R.S.: Effects of preferential transport and strain in bluff body stabilized lean and rich premixed CH 4/air flames. Proc. Combust. Inst. 34(1), 1411–1419 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the funding of the Program (Grant Nos. 91441117 and 51576182) of National Natural Science Foundation of China. The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taohong Ye.

Appendix: Radial profiles of mean and rms mass fractions of major species for flames SwB1 and SwB2

Appendix: Radial profiles of mean and rms mass fractions of major species for flames SwB1 and SwB2

The radial profiles of mean and rms mass fractions of major species for flames SwB1 and SwB2 are shown in Figs. 2027.

Fig. 20
figure 20

Radial distributions of mean and rms values of methane mass fraction, SwB1

Fig. 21
figure 21

Radial distributions of mean and rms values of methane mass fraction, SwB2

Fig. 22
figure 22

Radial distributions of mean and rms values of oxygen mass fraction, SwB1

Fig. 23
figure 23

Radial distributions of mean and rms values of oxygen mass fraction, SwB2

Fig. 24
figure 24

Radial distributions of mean and rms values of water mass fraction, SwB1

Fig. 25
figure 25

Radial distributions of mean and rms values of water mass fraction, SwB2

Fig. 26
figure 26

Radial distributions of mean and rms values of carbon dioxide mass fraction, SwB1

Fig. 27
figure 27

Radial distributions of mean and rms values of carbon dioxide mass fraction, SwB2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Ye, T., Wang, G. et al. Large Eddy Simulation of Turbulent Premixed Swirling Flames Using Dynamic Thickened Flame with Tabulated Detailed Chemistry. Flow Turbulence Combust 98, 841–885 (2017). https://doi.org/10.1007/s10494-016-9791-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9791-9

Keywords

Navigation