Skip to main content
Log in

Experiment and numerical simulation of Taylor–Couette flow controlled by oscillations of inner cylinder cross section

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

An experimental and numerical study of the controlled Taylor–Couette flow with free surface is presented in this work. It is aimed to carry out a controlling strategy based upon a combination of free surface effect and an inner cylinder cross section oscillation. Numerical simulations are performed using FLUENT software package for three-dimensional incompressible flows. The basic system geometry is characterized by a height H = 170 mm, an inner and outer cylinders with, respectively, R1 = 31.5 mm and R2 = 35 mm, a ratio of the inner to outer cylinder radii ɳ = 0.9, an aspect ratio Γ = 28.5 and a ratio of the gap to the inner cylinder radius, δ = 0.1. It is established that the first and the second instabilities are delayed. The Taylor vortices and Ekman cells can be destroyed throughout a process applicable for all the flow regimes encountered in the Taylor–Couette flow. The Taylor vortices show a particular sensitivity and can be easily destroyed using low deforming frequencies (f < 3 Hz). The Ekman cells, however, exhibit larger resistance to actuation and substantially higher deforming frequencies (f > 20 Hz) are required for the complete disappearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

u r , u θ , u z :

Velocity components

r,θ,z :

Cylindrical coordinates

Ta = \(Re\sqrt \delta\) :

Taylor number

Ta c :

Critical Taylor number

\(\upsilon\) :

Kinematic viscosity

f :

Frequency

R 1, R 2 :

Inner and outer cylinder radii

ρ :

Density

Ω 1, Ω 2 :

Inner and outer cylinder angular velocities

H f :

Height of working fluid

H :

Height of cylinders

\(\dot{m}_{\text{pq}} ,\;\dot{m}_{\text{qp}}\) :

Mass transfer between phases

R max :

Maximum limit of the oscillating inner cylinder

R(t) :

Instantaneous radius of the oscillating inner cylinder

d = R 2 − R 1 :

Annular gap

ε = \(\frac{{R_{ \max } - R_{1} }}{{R_{1} }}\) :

Oscillating amplitude

λ :

Axial wave number

Λ :

Axial wavelength

Γ = \(\frac{{H_{f} }}{d}\) :

Aspect ratio

\(\eta\) = \(\frac{{R_{1} }}{{R_{2} }}\) :

Ratio of the radii

\(\delta\) = \(\frac{{R_{1} }}{d}\) :

Gap ratio

Re = \(\frac{{\varOmega_{1} .R_{1} .d}}{\upsilon }\) :

Reynolds number

α :

Volume fraction

C :

Cell Volume

p, q :

Phases (air and liquid)

T :

Cycle of deformation

d max, d min :

Annular gap limits

References

  1. Gl Taylor (1923) Stability of a viscous liquid contained between two rotating cylinders. Philos Trans R Soc Lond A 223:289–343

    Article  Google Scholar 

  2. Couette M (1887) Oscillation tournante d’un solide en révolution contact avec un fluide visqueux. CR Acad Sci 105:1064–1067

    MATH  Google Scholar 

  3. Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Oxford at the Clarkndon Press, Oxford

    MATH  Google Scholar 

  4. Coles D (1965) Transition in circular Couette flow. J Fluid Mech 21:385. https://doi.org/10.1017/S0022112065000241

    Article  MATH  Google Scholar 

  5. Diprima RC, Swinney HL (1981) Instabilities and transition in flow between concentric rotating cylinders. In: Swinney HL, Gollub JP (eds) Hydrodynamic instabilities and the transition to turbulence. Springer, Berlin, pp 139–180

    Chapter  Google Scholar 

  6. Swinney HL, Gollub JP (1975) Onset of turbulence in a rotating fluid. Phys Rev Lett 35(14):927–930

    Article  Google Scholar 

  7. KoschmiederE L (1993) Benard cells and Taylor vortices. Cambridge University Press, NewYork

    Google Scholar 

  8. Benjamin TB (1978) Bifurcation phenomena in steady flows of a viscous fluid: I. theory. Proc R Soc A 359:1–26

    Article  MathSciNet  Google Scholar 

  9. Bouabdallah A (1980) Instabilités et turbulence dans l’écoulement de Taylor–Couette. PhDThesis, INPL, France

  10. Mullin T, Heise M, Pfister G (2017) Onset of cellular motion in Taylor–Couette flow. Phys Rev Fluids 2(8):081901

    Article  Google Scholar 

  11. Poncet S, Haddadi S, Viazzo S (2011) Numerical modeling of fluid flow and heat transfer in a narrow Taylor–Couette–Poiseuille system. Int J Heat Fluid Flow 32(1):128–144

    Article  Google Scholar 

  12. Khamami B (2002) The effect of viscous heating on the stability of Taylor–Couette flow. Fluid Mech 462:111–132

    Article  MathSciNet  Google Scholar 

  13. Sobolik V, Jirout T, Havlica J, Kristiawan M (2011) Wall shear rates in Taylor vortex flow. JAFM 2(4):25–31

    Google Scholar 

  14. Wimmer M (1988) Viscous flows and instabilities near rotating bodies. Prog Aerosp Sci 25:43–103

    Article  Google Scholar 

  15. Donnelly RJ (1964) Experiments on the stability of viscous flow between rotating cylinder. III. Enhancement of stability by modulation. Proc R Soc Lond A 281:130–139

    Article  Google Scholar 

  16. Lopez JM, Marques F (2002) Modulated Taylor–Couette flow: onset of spiral modes. Theor Comput Fluid Dyn 16(1):59–69

    Article  Google Scholar 

  17. Lopez JM, Marques F (2002) Spatial and temporal resonances in a periodically forced hydrodynamic system. Phys D 136(3–4):340–352

    MathSciNet  MATH  Google Scholar 

  18. Aouidef A (1994) Centrifugal instability of pulsed flow. Phys Fluids 6:3665–3676

    Article  Google Scholar 

  19. Barenghi CF, Jones CA (2006) Modulated Taylor–Couette flow. J Fluid Mech 208:127–160

    Article  MathSciNet  Google Scholar 

  20. Heinrichs RM, Cannell DS, Ahlers G, Jefferson M (1988) Experimental test of the perturbation expansion for the Taylor instability at various wavevectors. Phys Fluids 31:250–255

    Article  Google Scholar 

  21. Walsh TJ, Wagner WT, Donnelly RJ (1987) Stability of modulated Couette flow. Phys Rev Lett 58:2543–2546. https://doi.org/10.1103/PhysRevLett.58.2543

    Article  Google Scholar 

  22. Walsh TJ (1988) The influence of external modulation on the stability of azimuthal Taylor–Couette flow: an experimental investigation, vol 49–05. Ph. D. thesis. University of Oregon, p 1778

  23. Feugaing MG, Crumeyrolle O and Mutabazi I (2011) Etude expérimentale de l’écoulement de Couette-Taylor avec modulation de fréquence. 20eme CFM

  24. Oualli H, Lalaoua A, Hanchi S and Bouabdallah A (2013) Taylor–Couette flow control using the outer cylinder cross-section variation strategy. Eur Phys J Appl Phys 61(1)

    Article  Google Scholar 

  25. Oualli H, Mekadem M, Lebbi M, Bouabdallah A (2015) Taylor-Couette flow control by amplitude variation of the inner cylinder cross-section oscillation. Eur Phys J Appl Phys 71(1):11102. https://doi.org/10.1051/epjap/2015140232

    Article  Google Scholar 

  26. Lalaoua A, Bouabdallah A (2016) On the onset of Taylor vortices in finite-length cavity subject to a radial oscillation motion. J Appl Fluid Mech 9(4):1887–1896

    Google Scholar 

  27. Mahamadia A and Bouabdellah A (2003) Ecoulement de Tylor-Couette en géométrie finie sur à surface libre. Can J Chem Eng

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdelali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Jader Barbosa Jr., Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelali, A., Oualli, H., Rahmani, A. et al. Experiment and numerical simulation of Taylor–Couette flow controlled by oscillations of inner cylinder cross section. J Braz. Soc. Mech. Sci. Eng. 41, 259 (2019). https://doi.org/10.1007/s40430-019-1758-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1758-z

Keywords

Navigation