Skip to main content
Log in

Numerical Simulation of Laminar Taylor–Couette Flow

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The problem of the viscous incompressible fluid flow between two coaxial cylinders is considered in the case when the inner cylinder is rotates and the outer cylinder is stationary. The process of fluid flow is simulated by solving the three-dimensional Navier–Stokes equations. The computational algorithm is based on the finite volume method. The dependences of the dimensionless viscous torque from the Reynolds number and the radius ratio are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. M. M. Couette, ‘‘Etudes sur le frottement des liquides,’’ Ann. Chim. Phys. 6 (21), 433–510 (1890).

    MATH  Google Scholar 

  2. A. Mallock, ‘‘Experiments on fluid viscosity,’’ Phil. Trans. R. Soc., Ser. A 187, 41–56 (1896).

    MATH  Google Scholar 

  3. G. I. Taylor, ‘‘Stability of viscous liquid contained between rotating cylinders,’’ Phil. Trans. R. Soc. London, Ser. A 223, 289–343 (1923).

    Article  Google Scholar 

  4. C. D. Andereck, S. S. Liu, and H. L. Swinney, ‘‘Flow regimes in a circular Couette system with independently rotating cylinders,’’ J. Fluid Mech. 164, 155–183 (1985).

    Article  Google Scholar 

  5. http://www.openfoam.com/.

  6. I. V. Morenko, ‘‘Heat transfer from a heated cylinder rotating around its axis in laminar and turbulent crossflows of liquid,’’ Lobachevskii J. Math. 40 (6), 776–781 (2019).

    Article  MathSciNet  Google Scholar 

  7. D. A. Gubaidullin and B. A. Snigerev, ‘‘Numerical simulations of subcooled boiling flow in vertical pipe at high pressure,’’ Lobachevskii J. Math. 40 (6), 745–750 (2019).

    Article  MathSciNet  Google Scholar 

  8. D. A. Gubaidullin and Yu. V. Fedorov, ‘‘The theory of propagation of acoustic waves in a vapor-gas mixture with polydispersed droplets and particles,’’ Lobachevskii J. Math.40 (11), 1933–1943 (2019).

    Article  MathSciNet  Google Scholar 

  9. I. V. Morenko, ‘‘Viscous crossflow around a rotating circular cylinder,’’ Russ. Aeronaut. 61, 48–51 (2018).

    Article  Google Scholar 

  10. S. Poncet, S. Viazzo, A. Aubert, R. Soghe, and C. Bianchini, ‘‘Turbulent Couette–Taylor flows with endwall effects: A numerical benchmark,’’ Int. J. Heat Fluid Flow44, 229–238 (2013).

    Article  Google Scholar 

  11. H. Schlichting, Boundary-Layer Theory (Springer, Berlin, Heidelberg, 2017).

    Book  Google Scholar 

  12. P. R. Fenstermacher, H. L. Swinney, and J. P. Gollub, ‘‘Dynamical instabilities and the transition to chaotic Taylor vortex flow,’’ J. Fluid Mech. 94, 103–128 (1979).

    Article  Google Scholar 

  13. G. N. Fokoua, C. Gabillet, A. Aubert, and C. Colin, ‘‘Effect of bubble’s arrangement on the viscous torque in bubbly Taylor–Couette flow,’’ Phys. Fluids 034105, 1 (2015).

    Google Scholar 

  14. M. Kaneda, T. Tagawa, J. Noir, and J. M. Aurnou, ‘‘Variations in driving torque in Couette–Taylor flow subject to a vertical magnetic field,’’ J. Phys.: Conf. Ser. 14, 42–47 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Morenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morenko, I.V. Numerical Simulation of Laminar Taylor–Couette Flow. Lobachevskii J Math 41, 1255–1260 (2020). https://doi.org/10.1134/S199508022007029X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022007029X

Keywords:

Navigation