Skip to main content
Log in

Numerical analysis of rotational shape effect on skin friction coefficient in Couette-Taylor flows (with and without injection)

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This research aims to conduct a numerical analysis of the effect of geometrical and injection parameters on the skin friction coefficient in Taylor-Couette flow. Two concentric cylinders and cones are chosen for this purpose, with the inner one rotating and the outer one fixed. The relevant equations are solved using FLUENT software for three-dimensional flows, and the flow is investigated in both with and without air bubbles injection. The skin friction coefficient is measured as a function of Reynolds number up to Re = 10,000. Finally, the effect of geometry and microbubble injection on the skin friction coefficient, skin friction ratio, and power gain are investigated. The results show that in conical and cylindrical systems, the skin friction coefficient dropped when the Reynolds number increased. The presence and the surge of bubble injection rate decreases the skin friction coefficient. The skin friction coefficient in the conical system in both injection and non-injection states is significantly lower than the cylindrical system. Besides, at high Reynolds numbers, the skin friction coefficient is equal in both cylindrical and conical flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and material

The study data are openly available.

Code availability

Not applicable.

Abbreviations

\(C_{f}\) :

Skin friction coefficient of the inner cylinder

\(C_{f0}\) :

The skin friction coefficient without bubbles

\(C_{fcy}\) :

Skin friction coefficient of cylinder

\(C_{fco}\) :

Skin friction coefficient of cone

\(f_{\beta }\) :

Coefficient in \(\omega\) equation

\(f_{{\beta^{ * } }}\) :

Coefficient in \(k\) equation

\(g\) :

Gravitational acceleration \(\left( {{\raise0.7ex\hbox{$m$} \!\mathord{\left/ {\vphantom {m {s^{2} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${s^{2} }$}}} \right)\)

\(k\,\) :

Turbulence kinetic energy \(\left( {{\raise0.7ex\hbox{${m^{2} }$} \!\mathord{\left/ {\vphantom {{m^{2} } {s^{2} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${s^{2} }$}}} \right)\)

\(\kappa_{cy}\) :

Power gain in cylindrical Taylor-Couette flow

\(\kappa_{co}\) :

Power gain in conical Taylor-Couette flow

\(P\) :

Pressure \(\left( {Pa} \right)\)

\({\text{Re}}\) :

Reynolds number

\({\text{Re}}_{t}\) :

Turbulence Reynolds number

\({\text{Re}}_{cy}\) :

Reynolds number in cylindrical Taylor-Couette flow

\({\text{Re}}_{co}\) :

Reynolds number in conical Taylor-Couette flow

\(R_{avg}\) :

Average radius in conical Taylor-Couette flow \(\left( m \right)\)

\(S_{ij}\) :

Strain tensor

\(T\) :

Torque on inner cylinder in presence of bubbles \(\left( {N.m} \right)\)

\(T_{0}\) :

Torque on inner cylinder without bubbles \(\left( {N.m} \right)\)

\(t\) :

Time \((s)\)

\(U\) :

Linear velocity of inner cylinder \(\left( {{\raise0.7ex\hbox{$m$} \!\mathord{\left/ {\vphantom {m s}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$s$}}} \right)\)

\(U_{avg}\) :

Average linear velocity of inner cone \(\left( {{\raise0.7ex\hbox{$m$} \!\mathord{\left/ {\vphantom {m s}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$s$}}} \right)\)

\(u_{i}\) :

Mean velocity components

\(u_{i}^{\prime }\) :

Fluctuating velocity components

\(x_{i}\) :

Position vector \(\left( m \right)\)

\(\beta (t)\) :

Angular acceleration \(\left( {{\raise0.7ex\hbox{${rad}$} \!\mathord{\left/ {\vphantom {{rad} {s^{2} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${s^{2} }$}}} \right)\)

\(\eta\) :

Skin friction coefficient ratio

\(\mu \,\) :

Dynamic viscosity \(({\raise0.7ex\hbox{${N \cdot s}$} \!\mathord{\left/ {\vphantom {{N \cdot s} {m^{2} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${m^{2} }$}})\)

\(\mu_{t}\) :

Turbulence dynamic viscosity \(({\raise0.7ex\hbox{${N \cdot s}$} \!\mathord{\left/ {\vphantom {{N \cdot s} {m^{2} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${m^{2} }$}})\)

\(\upsilon\) :

Kinematic viscosity of main fluid \(({\raise0.7ex\hbox{${m^{2} }$} \!\mathord{\left/ {\vphantom {{m^{2} } s}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$s$}})\)

\(\tau_{w} \,\) :

Wall shear stress \(({\raise0.7ex\hbox{$N$} \!\mathord{\left/ {\vphantom {N {m^{2} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${m^{2} }$}})\)

\(\tau_{w - out}\) :

Wall shear stress on the bottom surface \(({\raise0.7ex\hbox{$N$} \!\mathord{\left/ {\vphantom {N {m^{2} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${m^{2} }$}})\)

\(\rho \,\) :

Density of fluid \(({\raise0.7ex\hbox{${kg}$} \!\mathord{\left/ {\vphantom {{kg} {m^{3} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${m^{3} }$}})\)

\(\delta_{ij}\) :

Kronecker delta

References

  1. Couette M (1890) ´Etudes sur le frottement des liquides. Annales de Chimie et de Physique 6(21):433–510

    MATH  Google Scholar 

  2. Mallock A, Thomson W (1896) III Experiments on fluid viscosity. Phil Trans R Soc Lond A 187:41–56

    Article  Google Scholar 

  3. Taylor GI (1923) VIII Stability of a viscous liquid contained between two rotating cylinders. Phil Trans R Soc Lond A 223(605–615):289–343

    MATH  Google Scholar 

  4. Matsumoto N et al (1989) Three-Dimensional Simulation of Taylor-Couette Flow. In: Fernholz H-H, Fiedler HE (eds) Advances in Turbulence 2. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  5. Atkhen K, Fontaine J, Wesfreid JE (2000) Highly turbulent Couette-Taylor bubbly flow patterns. J Fluid Mech 422:55–68

    Article  Google Scholar 

  6. Deng R, Wang C-H, Smith KA (2006) Bubble behavior in a Taylor vortex. Phys Rev E 73(3):036306

    Article  Google Scholar 

  7. Dou H-S, Khoo BC, Yeo KS (2008) Instability of Taylor-Couette flow between concentric rotating cylinders. Int J Therm Sci 47(11):1422–1435

    Article  Google Scholar 

  8. Poncet S, Haddadi S, Viazzo S (2011) Numerical modeling of fluid flow and heat transfer in a narrow Taylor–Couette–Poiseuille system. Int J Heat Fluid Flow 32(1):128–144

    Article  Google Scholar 

  9. Sugiyama K, Calzavarini E, Lohse D (2008) Microbubbly drag reduction in Taylor-Couette flow in the wavy vortex regime. J Fluid Mech 608:21–41

    Article  Google Scholar 

  10. Murai Y, Oiwa H, Takeda Y (2008) Frictional drag reduction in bubbly Couette-Taylor flow. Phys Fluids 20(3):034101

    Article  Google Scholar 

  11. Maryami R et al (2015) Frictional drag reduction using small bubbles in a Couette-Taylor flow. J Mar Sci Technol 20(4):652–669

    Article  Google Scholar 

  12. Maryami R et al (2014) Bubbly drag reduction in a vertical Couette-Taylor system with superimposed axial flow. Fluid Dyn Res 46(5):055504

    Article  Google Scholar 

  13. Gao X, Kong B, Vigil RD (2015) CFD investigation of bubble effects on Taylor-Couette flow patterns in the weakly turbulent vortex regime. Chem Eng J 270:508–518

    Article  Google Scholar 

  14. Lasagna D, Tutty OR, Chernyshenko S (2016) Flow regimes in a simplified Taylor–Couette-type flow model. Eur J Mech B Fluids 57:176–191

    Article  MathSciNet  Google Scholar 

  15. Verschoof RA et al (2018) Air cavities at the inner cylinder of turbulent Taylor-Couette flow. Int J Multiph Flow 105:264–273

    Article  Google Scholar 

  16. Soltani Ayan M, Entezari M, Chini SF (2019) Experiments on skin friction reduction induced by superhydrophobicity and Leidenfrost phenomena in a Taylor-Couette cell. Int J Heat Mass Trans 132:271–279

    Article  Google Scholar 

  17. Azaditalab M, Houshmand A, Sedaghat A (2016) Numerical study on skin friction reduction of nanofluid flows in a Taylor-Couette system. Tribol Int 94:329–335

    Article  Google Scholar 

  18. Naseem U et al (2019) Experimental investigation of flow instabilities in a wide gap turbulent rotating Taylor-Couette flow. Case Studies Thermal Eng 14:100449

    Article  Google Scholar 

  19. Wimmer M (2006) An experimental investigation of Taylor vortex flow between conical cylinders. J Fluid Mech 292:205–227

    Article  Google Scholar 

  20. Noui-Mehidi MN, Ohmura N, Kataoka K (2001) An Experimental And Numerical Investigation of Taylor Vortex Flow in The System of Coaxial Rotating Conical Cylinders. In 14th Australasian Fluid Mechanics Conference 10–14 December 2001 Adelaide University, Adelaide, Australia

  21. Noui-Mehidi MN, Ohmura N, Kataoka K (2005) Dynamics of the helical flow between rotating conical cylinders. J Fluids Struct 20(3):331–344

    Article  Google Scholar 

  22. Noui-Mehidi M, Ohmura N, Kataoka K (2004) Gap Effect on Taylor Vortex Size between Rotating Conical Cylinders.

  23. Xu X, Xu L (2009) A numerical simulation of flow between two rotating coaxial frustum cones. Commun Nonlinear Sci Numer Simul 14(6):2670–2676

    Article  Google Scholar 

  24. Li Q-S, Wen P, Xu L-X (2010) Transition to taylor vortex flow between rotating conical cylinders. J Hydrodyn 22(2):241–245

    Article  MathSciNet  Google Scholar 

  25. Zhang Y, Xu L, Li D (2012) Numerical computation of end plate effect on Taylor vortices between rotating conical cylinders. Commun Nonlinear Sci Numer Simul 17(1):235–241

    Article  MathSciNet  Google Scholar 

  26. Li X, Zhang J-J, Xu L-X (2014) A numerical investigation of the flow between rotating conical cylinders of two different configurations. J Hydrodyn, Ser B 26(3):431–435

    Article  Google Scholar 

  27. Popoff B, Braun M (2007) A Lagrangian approach to dense particulate flows. In International Conference on Multiphase Flow, Leipzig, Germany.

  28. Ansys I (2013) Ansys CFX-Solver modeling guide Release 15. 2013.

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Morteza Javadpour.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor Jader Barbosa Jr.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, M., Farahat, S. & Javadpour, S.M. Numerical analysis of rotational shape effect on skin friction coefficient in Couette-Taylor flows (with and without injection). J Braz. Soc. Mech. Sci. Eng. 43, 573 (2021). https://doi.org/10.1007/s40430-021-03262-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03262-4

Keywords

Navigation