Skip to main content

Advertisement

Log in

Iron(II) sulfate and pH decrease seed germination and seedling growth and alter nutrient and polyamine contents in Cedrela fissilis Vellozo (Meliaceae)

  • Biochemistry & Physiology - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

The emission of iron particle solid material into nature can contribute to alterations in the phytophysiognomy of the Brazilian Atlantic Forest, affecting plant growth. We aimed to evaluate the effect of different concentrations of iron(II) sulfate and pH on germination and growth and nutrient and polyamine (PA) contents in seedlings of Cedrela fissilis Vellozo. Seeds were sown with different concentrations (0, 2, 4, 8, and 10 mM) of iron(II) sulfate at two pH values (3 and 5.5). Germination was reduced by iron(II) sulfate and pH treatments and was lower at concentrations of 8 and 10 mM at pH 3. The fresh matter decreased with higher concentrations of iron(II) sulfate at the two tested pH values. The higher concentrations of iron(II) sulfate at pH 3 increased the Fe, Mn, Zn, Ca, and N contents in the roots. An increase in the content of putrescine and total free PAs in the roots could be related to an adaptive response to iron stress. The results observed in the present work suggest that C. fissilis may be a species with the potential for use in the ecological restoration of areas contaminated with iron, opening promising prospects for future studies on the recovery of degraded regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  • Alcázar R, García-Martínez JL, Cuevas JC, Tiburcio AF, Altabella T (2005) Overexpression of ADC2 in Arabidopsis induces dwarfism and late-flowering through GA deficiency. T Plant J 43:425–436

    Article  Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  PubMed  Google Scholar 

  • Alcázar R, Bueno M, Tiburcio AF (2020) Polyamines: small amines with large effects on plant abiotic stress tolerance. Cells 9:2373

    Article  PubMed  PubMed Central  Google Scholar 

  • Aldesuquy H, Haroun S, Abo-Hamed S, El-Saied A-W (2014) Involvement of spermine and spermidine in the control of productivity and biochemical aspects of yielded grains of wheat plants irrigated with waste water. Egypt J Basic Appl Sci 1:16–28

    Google Scholar 

  • Audebert A, Fofana M (2009) Rice yield gap due to iron toxicity in West Africa. J Agron Crop Sci 195:66–76

    Article  CAS  Google Scholar 

  • Balafrej H, Bogusz D, Triqui Z-EA, Guedira A, Bendaou N, Smouni A, Fahr M (2020) Zinc hyperaccumulation in plants: a review. Plants 9:562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barstow M (2018) Cedrela fissilis. The IUCN red list of threatened species 2018: e.T33928A68080477

  • Becker M, Asch F (2005) Iron toxicity in rice—conditions and management concepts. J Plant Nutr Soil Sci 168:558–573

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  PubMed  Google Scholar 

  • Castiglione S, Todeschini V, Franchin C, Torrigiani P, Gastaldi D, Cicatelli A, Rinaudo C, Berta G, Biondi S, Lingua G (2009) Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: a large-scale field trial on heavily polluted soil. Environ Pollut 157:2108–2117

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Shao Q, Yin L, Younis A, Zheng B (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 9

  • Connolly EL, Guerinot ML (2002) Iron stress in plants. Genome Biol 3:1021

    Article  Google Scholar 

  • Covre WP, Pereira WVS, Gonçalves DAM, Teixeira OMM, Amarante CB, Fernandes AR (2020) Phytoremediation potential of Khaya ivorensis and Cedrela fissilis in copper contaminated soil. J Environ Manag 268:110733

    Article  CAS  Google Scholar 

  • De Zacchini M, De Agazio M (2001) Dimethylthiourea, a hydrogen peroxide trap, partially prevents stress effects and ascorbate peroxidase increase in spermidine-treated maize roots. Plant Cell Environ 24:237–244

    Article  Google Scholar 

  • Dorlodot S, Lutts S, Bertin P (2005) Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice. J Plant Nutr 28:1–20

    Article  Google Scholar 

  • Garcia MG, Silva RS, Carniello MA, Veldman JW, Rossi AAB, de Oliveira LO (2011) Molecular evidence of cryptic speciation, historical range expansion, and recent intraspecific hybridization in the Neotropical seasonal forest tree Cedrela fissilis (Meliaceae). Mol Phylogenet Evol 61:639–649

    Article  CAS  PubMed  Google Scholar 

  • GBIF (2023) Global biodiversity information facility. Cedrela fissilis Vell. Access: https://www.gbif.org/species/7107974.

  • Grantz DA, Garner JHB, Johnson DW (2003) Ecological effects of particulate matter. Environ Int 29:213–239

    Article  CAS  PubMed  Google Scholar 

  • Groppa MD, Zawoznik MS, Tomaro ML, Benavides MP (2008) Inhibition of root growth and polyamine metabolism in sunflower (Helianthus annuus) seedlings under cadmium and copper stress. Biol Trace Elem Res 126:246

    Article  CAS  PubMed  Google Scholar 

  • Guo G, Xiao J, Jeong BR (2022) Irons source and medium pH affect nutrient uptake and pigment content in Petunia hybrida ‘Madness Red’ cultured in vitro. Int J Mol Sci 23

  • IBAMA (2015) Instituto Brasileiro de Mineração (IBAMA) - Laudo Técnico Preliminar: impactos ambientais decorrentes do desastre envolvendo o rompimento da barragem de Fundão, em Mariana, Minas Gerais. Brasília. Access: http://www.ibama.gov.br/

  • IBAMA (2021) Instituto Brasileiro de Mineração (IBAMA)—Relatório anual de atividades janeiro a dezembro de 2020. Access: https://ibama.gov.br

  • Jackson ML (1965) Soil chemical analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Jain R, Srivastava S, Solomon S, Shrivastava AK, Chandra A (2010) Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiol Plant 32:979–986

    Article  CAS  Google Scholar 

  • Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607

    Article  CAS  PubMed  Google Scholar 

  • Jorgenson KD, Lee PF, Kanavillil N (2013) Ecological relationships of wild rice, Zizania spp. 11. Electron microscopy study of iron plaques on the roots of northern wild rice (Zizania palustris). Botany 91:189–201

    Article  CAS  Google Scholar 

  • Kabir M, Iqbal MZ, Shafiq M, Farooqi Z (2008) Reduction in germination and seedling growth of Thespesia populnea L., caused by lead and cadmium treatments. Pak J Bot 40:2419–2426

    CAS  Google Scholar 

  • Kuinchtner CC, Oliveira GSW, Aguilar MVM, Bernardy D, Berger M, Tabaldi LA (2021) Can species Cedrela fissilis Vell be used in sites contaminated with toxic aluminum and cadmium metals? iForest Biogeo Fores 14:508

    Article  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ma H, Jia P, Wang J, Jia L, Zhang T, Yang Y, Chen H, Wei X (2012) Responses of seedling growth and antioxidant activity to excess iron and copper in Triticum aestivum L. Ecotoxicol Environ Saf 86:47–53

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst SA, Martin C, Michael AJ (2009) A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21:318–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma T, Duan XH, Yang YY, Yao J, Gao TP (2017) Zinc-alleviating effects on iron-induced phytotoxicity in roots of Triticum aestivum. Biol Plant 61:733–740

    Article  CAS  Google Scholar 

  • Majerus V, Bertin P, Lutts S (2007) Effects of iron toxicity on osmotic potential, osmolytes and polyamines concentrations in the African rice (Oryza glaberrima Steud.). Plant Sci 173:96–105

    Article  CAS  Google Scholar 

  • Mangaravite É, da Silveira TC, Huamán-Mera A, de Oliveira LO, Muellner-Riehl AN, Schnitzler J (2019) Genetic diversity of Cedrela fissilis (Meliaceae) in the Brazilian Atlantic Forest reveals a complex phylogeographic history driven by quaternary climatic fluctuations. J Syst Evol 57:655–669

    Article  Google Scholar 

  • SOS Mata Atlântica, INPE (2021) Atlas dos remanescentes florestais da Mata Atlântica: período 2019/2020, relatório técnico. Fundação SOS Mata Atlântica / Instituto Nacional de Pesquisas. Access: https://www.sosma.org.br/wp-content/uploads/2021/05/SOSMA_Atlas-da-Mata-Atlantica_2019-2020.pdf.

  • Mihoub A, Chaoui A, El Ferjani E (2005) Biochemical changes associated with cadmium and copper stress in germinating pea seeds (Pisum sativum L.). C R Biol 328:33–41

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Subba S (2022) Alleviative effects of ferrous sulfate on arsenic toxicity in Lens culinaris Medik. by enhancing iron plaque formation on roots. Acta Physiol Plant 44:126

    Article  CAS  Google Scholar 

  • Nechita C, Iordache AM, Lemr K, Levanič T, Pluhacek T (2021) Evidence of declining trees resilience under long term heavy metal stress combined with climate change heating. J Clean Prod 317:128428

    Article  CAS  Google Scholar 

  • Nguyen NT, Hiep ND, Fujita K (2005) Iron enhances aluminum-induced leaf necrosis and plant growth inhibition in Eucalyptus camaldulensis. Plant Soil 277:139–152

    Article  CAS  Google Scholar 

  • Oliveira TDR, Aragão VPM, Moharana KC, Fedosejevs E, do Amaral FP, de Sousa KR, Thelen JJ, Venâncio TM, Silveira V, Santa-Catarina C (2020) Light spectra affect the in vitro shoot development of Cedrela fissilis Vell. (Meliaceae) by changing the protein profile and polyamine contents. Biochim Biophys Acta Proteins Proteomics 1868:140529

    Article  CAS  PubMed  Google Scholar 

  • Paiva HNd, Carvalho JGd, Siqueira JO (2002) Índice de translocação de nutrientes em mudas de cedro (Cedrela fissilis Vell.) e de ipê-roxo (Tabebuia impetiginosa (Mart.) Standl.) submetidas a doses crescentes de cádmio, níquel e chumbo. Rev Árvore 26:467–473

    Article  Google Scholar 

  • Pereira EG, Oliva MA, Kuki KN, Cambraia J (2009) Photosynthetic changes and oxidative stress caused by iron ore dust deposition in the tropical CAM tree Clusia hilariana. Trees 23:277

    Article  CAS  Google Scholar 

  • Pereira EG, Oliva MA, Siqueira-Silva AI, Rosado-Souza L, Pinheiro DT, Almeida AM (2014) Tropical rice cultivars from lowland and upland cropping systems differ in iron plaque formation. J Plant Nutr 37:1373–1394

    Article  CAS  Google Scholar 

  • Pereira WVS, Teixeira RA, de Souza ES, de Moraes ALF, Campos WEO, do Amarante CB, Martins GC, Fernandes AR (2020) Chemical fractionation and bioaccessibility of potentially toxic elements in area of artisanal gold mining in the Amazon. J Environ Manag 267:110644

    Article  CAS  Google Scholar 

  • Perez-Amador MA, Leon J, Green PJ, Carbonell J (2002) Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol 130:1454–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters J (2005) Wisconsin procedures for soil testing, plant analysis and feed & forage analysis: Plant analysis. College of Agriculture Life Sciences, University of Wisconsin-Extension, Madison, WI, Department of Soil Science

    Google Scholar 

  • Rahoui S, Chaoui A, El-Ferjani E (2010) Reserve mobilization disorder in germinating seeds of Vicia faba L. exposed to cadmium. J Plant Nutr 33:809–817

    Article  CAS  Google Scholar 

  • Rocha-Nicoleite E, Overbeck GE, Müller SC (2017) Degradation by coal mining should be priority in restoration planning. Perspect Ecol Conserv 15:202–205

    Google Scholar 

  • Rosa MR, Brancalion PHS, Crouzeilles R, Tambosi LR, Piffer PR, Lenti FEB, Hirota M, Santiami E, Metzger JP (2021) Hidden destruction of older forests threatens Brazil’s Atlantic Forest and challenges restoration programs. Sci Adv 7:4547

    Article  Google Scholar 

  • Sagardoy R, Morales F, López-Millán A-F, Abadía A, Abadía J (2009) Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biol 11:339–350

    Article  CAS  PubMed  Google Scholar 

  • Sfaxi-Bousbih A, Chaoui A, El Ferjani E (2010) Copper affects the cotyledonary carbohydrate status during the germination of bean seed. Biol Trace Elem Res 137:110–116

    Article  CAS  PubMed  Google Scholar 

  • Shevyakova NI, Cheremisina AI, Kuznetsov VV (2011) Phytoremediation potential of Amaranthus hybrids: antagonism between nickel and iron and chelating role of polyamines. Russ J Plant Physiol 58:634–642

    Article  CAS  Google Scholar 

  • Silva FdAS, Azevedo CAV (2016) The assistat software version 7.7 and its use in the analysis of experimental data. Afr J Agric Res 11:3733–3740

    Article  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2005) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140:613–623

    Article  PubMed  Google Scholar 

  • Siqueira-Silva AI, Silva LCd, Azevedo AA, Oliva MA (2012) Iron plaque formation and morphoanatomy of roots from species of restinga subjected to excess iron. Ecotoxicol Environ Saf 78:265–275

    Article  CAS  PubMed  Google Scholar 

  • Smith TA (1985) Polyamines. Annu Rev Plant Physiol 36:117–143

    Article  CAS  Google Scholar 

  • Spormann S, Soares C, Teixeira J, Fidalgo F (2021) Polyamines as key regulatory players in plants under metal stress—a way for an enhanced tolerance. Ann Appl Biol 178:209–226

    Article  CAS  Google Scholar 

  • Streit NM, Canterle LP, Canto MWd, Hecktheuer LHH (2005) The chlorophylls. Ciência Rural 35:748–755

    Article  CAS  Google Scholar 

  • Wang L, Liu B, Wang Y, Qin Y, Zhou Y, Qian H (2020) Influence and interaction of iron and lead on seed germination in upland rice. Plant Soil 455:187–202

    Article  CAS  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahra N, Hafeez MB, Shaukat K, Wahid A, Hasanuzzaman M (2021) Fe toxicity in plants: impacts and remediation. Physiol Plant 173:201–222

    CAS  PubMed  Google Scholar 

  • Zhou C, Zhu L, Guo J, Xiao X, Ma Z, Wang J (2018) Bacillus subtilis STU6 ameliorates iron deficiency in tomato by enhancement of polyamine-mediated iron remobilization. J Agric Food Chem 67:320–330. https://doi.org/10.1021/acs.jafc.8b05851

    Article  PubMed  Google Scholar 

  • Zhu XF, Wang B, Song WF, Zheng SJ, Shen RF (2016) Putrescine alleviates iron deficiency via NO-dependent reutilization of root cell-wall Fe in Arabidopsis. Plant Physiol 170:558–567

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financed in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (444453/2014-8 and 309303/2019-2)) and the Fundação Carlos Chagas Filho de Amparo à Pesquisa no Estado do Rio de Janeiro (FAPERJ) (E26/202.969/2016; E26/202.533/2019 and E-26/210.088/2022). We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001. BVdaS thanks the scholarship provided by CAPES. VPMA and TRO acknowledge the scholarship funded by FAPERJ.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and FAPERJ.

Author information

Authors and Affiliations

Authors

Contributions

BVS, TRO, ACR and CSC: conceived the study, designed the experiments and wrote the manuscript. BVS and TRO: were responsible for the experiments and data analysis and performed the statistical analyses. VS collaborated with data analysis. BVS and VPMA: performed the PA analyses. MSMF and AJCC: performed nutrient analysis. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Claudete Santa-Catarina.

Ethics declarations

Conflict of interest

The authors of the manuscript have no conflicts of interest to declare.

Ethics approval

This article does not include studies about humans or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, B.V., de Oliveira, T., Aragão, V.P.M. et al. Iron(II) sulfate and pH decrease seed germination and seedling growth and alter nutrient and polyamine contents in Cedrela fissilis Vellozo (Meliaceae). Braz. J. Bot 46, 281–292 (2023). https://doi.org/10.1007/s40415-023-00878-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-023-00878-9

Keywords

Navigation